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ABSTRACT

Although FFTNet neural vocoders can synthesize speech wave-
forms in real time, the synthesized speech quality is worse than that
of WaveNet vocoders. To improve the synthesized speech quality of
FFTNet while ensuring real-time synthesis, residual connections are
introduced to enhance the prediction accuracy. Additionally, time-
invariant noise shaping and subband approaches, which significantly
improve the synthesized speech quality of WaveNet vocoders, are
applied. A subband FFTNet vocoder with multiband input is also
proposed to directly compensate the phase shift between subbands.
The proposed approaches are evaluated through experiments using
a Japanese male corpus with a sampling frequency of 16 kHz. The
results are compared with those synthesized by the STRAIGHT
vocoder without mel-cepstral compression and those from conven-
tional FFTNet and WaveNet vocoders. The proposed approaches
are shown to successfully improve the synthesized speech quality of
the FFTNet vocoder. In particular, the use of noise shaping enables
FFTNet to significantly outperform the STRAIGHT vocoder.

Index Terms— speech synthesis, vocoder, WaveNet, FFTNet,
noise shaping, subband processing

1. INTRODUCTION

In conventional statistical parametric speech synthesis (SPSS) [1]
and voice conversion (VC) [2], source-filter vocoders are typically
employed to synthesize speech waveforms from estimated and con-
verted acoustic features. These features are mainly constructed from
the fundamental frequency and vocal tract spectrums. To improve
the synthesized speech quality of conventional SPSS and VC over
that offered by a simple mel-log spectrum approximation (MLSA)
filter [3], several sophisticated corpus-independent vocoders have
been developed [4-8]. Compared with these corpus-independent
vocoders, deep learning-based corpus-dependent approaches, such
as acoustic feature extraction [9], glottal vocoder [10, 11], power
spectrum reconstruction for vocoded speech [12], and speech wave-
form generation [13, 14] from power spectrums estimated using
the Griffin—Lim algorithm [15], have been investigated as in deep
learning-based acoustic models for SPSS and VC [16]. However,
the quality of their synthesized speech is limited by the analysis
errors, approximations, and assumptions inherent in conventional
vocoders.

WaveNet [17, 18] is a neural network-based raw audio autore-
gressive generative approach. In text-to-speech synthesis (TTS),
WaveNet directly synthesizes raw speech waveforms from linguis-
tic features, allowing it to outperform state-of-the-art unit selection-
and SPSS-based TTS systems. Other raw audio generative models
such as SampleRNN [19] and WaveRNN [20] have also been pro-
posed. Such raw audio generative models can realize end-to-end
TTS, converting text to raw speech waveforms. Examples include

Char2Wav [21], Deep Voice [22-24], and Tacotron 2 [25-27]. The
speech quality of English synthesized by Tacotron 2 can match that
of natural speech with a sampling frequency of 24 kHz [25].

Compared with TTS, a WaveNet-based neural vocoder that
directly synthesizes raw speech waveforms from acoustic fea-
tures [28] has been used to drive conventional source-filter vocoders
within a raw audio generative model framework. Neural vocoders
based on WaveNet [28] and SampleRNN [29] have been applied to
SPSS [30-34] and VC [35-39], and also outperform conventional
source-filter vocoders. In addition, several speaker-independent
WaveNet vocoders have been investigated [23,24,34,40,41].

Although source-filter vocoders can synthesize speech wave-
forms in real time, the synthesis speed of WaveNet and SampleRNN
neural vocoders remains problematic, because the sequential syn-
thesis of each sample requires a huge number of network parame-
ters [17,19]. To overcome this problem, Deep Voice uses smaller
networks that quickly synthesize speech waveforms in real time.
However, there is a tradeoff between the synthesis speed and the
synthesized speech quality [22]. Parallel WaveNet [18] and Wav-
eRNN [20] use a probability density distillation and a single-layer
recurrent neural network with sparse and subscale modifications,
respectively. These methods enable real-time synthesis with 16-bit
linear pulse code modulation (PCM) raw audio prediction without
any degradation in synthesized speech quality. However, the de-
tailed network structures of these methods, especially the linguistic
feature input network, are not disclosed, and complicated training
and synthesis strategies might be required.

An alternative raw audio autoregressive generative model, FFT-
Net [42], has a simpler structure based on a 1 X 1 convolutional net-
work and rectified liner unit (ReLU) layers. As a result, FFTNet can
realize real-time raw audio synthesis. To improve the synthesized
speech quality, four modifications have been introduced, namely,
zero padding and noise injection in the training stage, argmax sam-
pling of voice segments, and spectral subtraction [43]. However,
despite these modifications, the synthesized speech quality of FFT-
Net vocoders remains inferior to that of WaveNet vocoders. In par-
ticular, argmax sampling can only be used when the fundamental
frequency is known, and spectral subtraction introduces additional
musical noise. Therefore, alternative approaches are required.

To improve the synthesized speech quality of FFTNet vocoders
while ensuring that the network model size remains small enough
for real-time synthesis, this paper presents the following four ap-
proaches. 1) Residual connections are introduced into FFTNet to im-
prove the prediction accuracy. 2) Time-invariant noise shaping [40,
44,45] and 3) subband approaches [46,47], which significantly im-
prove the synthesized speech quality in WaveNet vocoders, are di-
rectly applied to FFTNet. 4) A subband FFTNet vocoder with multi-
band input is proposed for the direct compensation of the phase shift
between subbands.
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Fig. 1. Baseline FFTNet vocoder structure with L layers.

2. WAVENET AND FFTNET NEURAL VOCODERS

Given the acoustic features h, the WaveNet and FFTNet neural
vocoders [28, 42] model the conditional probability distribution
p(x|h) of the raw audio waveform = = [z(1), ---, z(T)] as

p(@lh) = [[ o)1), -, «(t - 1), h). (1

In WaveNet, Eq. (1) is modeled by a stack of dilated causal convo-
lution layers, allowing the efficient input of very long audio sam-
ples with relatively few layers. However, the network model size of
WaveNet vocoders is still too large to synthesize speech waveforms
in real time.

To significantly reduce the network model size, FFTNet uses
simple 1 x 1 convolution layers instead of the dilated causal convo-
lution layers, and can therefore synthesize speech waveforms in real
time with a fast generation algorithm [48].

Rather than a continuous distribution, the WaveNet and FFT-
Net models output a categorical distribution of the next sample z(t)
through a final softmax layer. This approach is relatively flexible
and can easily model arbitrary distributions, although raw waveform
inputs are typically treated as continuous values. In vanilla WaveNet
and FFTNet, a p-law companding algorithm defined in G.711 [49] is
introduced and raw audio waveforms are quantized into one of 256
possible values.
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Fig. 2. Proposed FFTNet with residual connections.

In SPSS and VC, acoustic features for vocoders are typically
analyzed every 5 ms. Some adjustment of the time resolution be-
tween speech waveform a and acoustic features h is then required.
In WaveNet vocoders, a simple approach for matching the sequence
lengths of o and h involves copying h in each frame according
to the shift amount of the analysis window [28, 40,47]. In FFT-
Net vocoders, a linear interpolation method is applied [42]. Based
on empirical results, transposed convolution [17] is applied for up-
sampling the acoustic features in both the WaveNet and FFTNet
vocoders, rather than the simple copy and linear interpolation ap-
proaches. The baseline L-layer FFTNet vocoder structure investi-
gated in this paper is illustrated in Fig. 1, where the receptive field is
2% samples.

3. IMPROVING FFTNET VOCODER BY INTRODUCING
RESIDUAL CONNECTIONS AND SIGNAL PROCESSING
APPROACHES

The simple network structure of FFTNet enables speech waveforms
to be synthesized in real time, although the synthesized speech qual-
ity is not as good as that of WaveNet. To improve the synthesized
speech quality of FFTNet while retaining a network model size that
allows real-time synthesis, a network structure modification and two
signal processing methods, time-invariant noise shaping and sub-
band processing, are now described.

3.1. Introducing residual connections

To improve the FFTNet model while ensuring real-time synthesis,
two network modifications inspired by the WaveNet model structure
are investigated.

The first is the introduction of skip connections from all layers,
as used in WaveNet. However, empirical results indicate that this
cannot improve the FFTNet prediction accuracy, and so it is not used
in the experiments.

The other modification introduces residual connections in all
layers, an approach that is also employed in WaveNet, as shown
in Fig. 2. Experimental results (see Sec. 4) demonstrate that this
modification can significantly improve the prediction accuracy and
synthesized speech quality of FFTNet.

3.2. FFTNet with time-invariant noise shaping method

The speech signals generated by WaveNet often suffer from noise
caused by prediction errors, and these noise signals tend to cause
large spectral distortions in high-frequency bands. Thus, the noise
signals degrade the synthesized speech quality [44].

To reduce the adverse effects of the noise signals generated by
neural vocoders, predictive pulse code modulation (PPCM) [50]-
based time-invariant noise shaping, which is a perceptual weighting
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Fig. 3. Time-invariant noise shaping method for WaveNet and FFTNet neural vocoders.

technique, has been applied to WaveNet [40, 44]. This noise shap-
ing method is expected to improve the synthesized speech quality
of FFTNet vocoders, and is therefore directly applied to FFTNet. A
block diagram of time-invariant noise shaping is depicted in Fig. 3.

Similar to WaveNet methods [40, 44], a mel-generalized cep-
strum [51] is employed to calculate the noise shaping filter. The
transfer function of the filter is given by

M.
G =7 (6O + X ez ™). @
m=1
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where ¢y (m), 7, B, and M. are the m-th mel-generalized cepstral
coefficients, a power parameter of the mel-generalized cepstrum, a
parameter to control noise energy in the formant regions, and the
order of the mel-generalized cepstrum, respectively. 2! is the first-
order all-pass function given by
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where « is the frequency warping parameter.

The averaged mel-generalized cepstral coefficients are calcu-
lated in advance over all frames extracted from the training data,
and are then used for the time-invariant noise shaping filtering imple-
mented by the MLSA filter [3] in the training stage (Fig. 3(a)). In the
synthesis stage, the inverse filter is easily derived by multiplying the
mel-generalized cepstral coefficients by —1, and the reconstructed
speech signal is finally obtained as shown in Fig. 3(b).

3.3. Subband FFTNet

For rapid synthesis and improved synthesized speech quality, a sub-
band WaveNet based on multirate signal processing [52,53] has been
proposed [46, 47]. By introducing an overlapped single-sideband
(SSB) filterbank based on a square-root Hann window [46,47], sub-
band WaveNet achieves better prediction accuracy compared with
fullband WaveNet, resulting in accelerated synthesis speed and im-
proved synthesized speech quality. Thus, the subband approach is
also directly applied to FFTNet.

A block diagram of the proposed subband FFTNet vocoder is
illustrated in Fig. 4. In the training stage, fullband speech wave-
forms « = [z(1), ---, x(T)] with a sampling frequency of fs
are decimated by a factor of M and decomposed into N subband
streams &, = [@n (1), ---, zn(T/M)] of (short) length T'/M and
low sampling frequency fs/M by an overlapped SSB analysis filter-
bank. Each subband FFTNet network p,, (¢ |h) is then separately
and efficiently trained by each subband waveform z,, with common
acoustic features h. In the synthesis stage, each subband stream
&n = [£n(1), -+, n(T/M)] is simultaneously generated by the
trained network and upsampled by a factor of M, and the synthe-
sized speech waveform with a sampling frequency of f's is obtained
by an overlapped SSB synthesis filterbank. The proposed subband
method can be combined with the noise shaping approach, and is
evaluated in the experiments reported in Sec. 4.

In the subband WaveNet vocoder [47], there is a phase shift
between subbands because each estimated sample %, (t) is indepen-
dently generated from already-estimated past samples [£,, (1), ---,
Zn(t — 1)] and acoustic features h with random sampling based on
pn(xn|h). Thus, a maximum correlation-based phase shift com-
pensation between subbands is introduced to the subband WaveNet
vocoder. However, the results of further investigations indicate that
the maximum correlation-based approach cannot improve the syn-
thesized speech quality when transposed convolution is used to up-
sample the acoustic features. Therefore, the maximum correlation-
based approach is not included in the subband FFTNet vocoder, and
another phase shift compensation approach is proposed in the next
subsection.

3.4. Subband FFTNet with multiband input

To directly compensate the phase shift between subbands within a
neural network framework, a subband FFTNet vocoder with multi-
band input is proposed. In this approach, the m-th band training
and synthesis uses other band waveforms as well as the n-th band,
unlike the subband method with single-band input described in
Sec. 3.3. The same strategy is used in several other methods: 1)
pixelCNN [54, 55] for conditional color image generation, where
a blue pixel is predicted from the previous red, green, and blue
pixels; 2) the neural parametric singing synthesizer [56, 57], where
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Fig. 4. Block diagram of proposed subband FFTNet vocoder.

a vocal tract spectrum is predicted using the previous spectrum and
fundamental frequency trajectories; and 3) subscale WaveRNN [20].

However, when using many band waveforms, the network model
size increases because the number of 1 X 1 convolution layers in the
first layer corresponds to the number of multiband waveforms. To re-
duce the network model size, the use of only the first and n-th band
waveforms for n-th band training and synthesis is investigated. A
block diagram of the proposed subband FFTNet vocoder with multi-
band input and its first-layer network structure for n-th band training
and synthesis are depicted in Figs. 5 and 6, respectively. Compared
with the single-band input method, two additional 1 X 1 convolution
layer components are required for the first-band waveform input, as
shown in Fig. 6. For first-band training and synthesis, the standard
subband method using only the first-band input is shown in Fig. 5.
The proposed method is expected to directly compensate the phase
shift between subbands in the synthesis with random sampling based
on py(x,|h). Compared with WaveNet, the subband method with
multiband input can be easily implemented in FFTNet because of its
simple network structure, as shown in Fig. 6.

The proposed subband method with multiband input can also
be combined with the noise shaping approach. However, empir-
ical results suggest that the synthesized speech waveforms some-
times include collapsed segments, which are also found in WaveNet
vocoders [58]. Therefore, subband FFTNet with multiband input
combined with noise shaping is not included in the experiments re-
ported here, and further investigations will be conducted in future
work.
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Fig. 5. Block diagram of proposed subband FFTNet vocoder with
multiband input.

4. EXPERIMENTS

4.1. Experimental conditions

To evaluate the effectiveness of the proposed methods for FFTNet
vocoders, a series of objective and subjective experiments were
conducted using a Japanese male speech corpus recorded with a
sampling frequency of 48 kHz and downsampled to 16 kHz, as
used in [46,47]. In the experiments, 5697 utterances (about 3.7 h)
were used as the training set and 20 utterances were used as the
test set. The experiments compared (a) the baseline vanilla FFTNet
vocoder [42] with (b) FFTNet with residual connections, (¢) FFT-
Net with noise shaping, (d) subband FFTNet, (e) subband FFTNet
with noise shaping, and (f) subband FFTNet with multiband in-
put. In addition, results were computed for (g) the vanilla WaveNet
vocoder [28], (h) the WaveNet vocoder with time-invariant noise
shaping method [44], and (i) the conventional STRAIGHT source-
filter vocoder without mel-cepstral compression [4]. Methods (c)—(f)
also included residual connections.

In the experiments, acoustic features h were analyzed every
5 ms over a Hann window of length 25 ms. The fundamen-
tal frequency f,, analyzed by an NDF algorithm implemented in
STRAIGHT [59], was used in all the vocoders.

For the WaveNet and FFTNet vocoders, the O—th to 24—th mel-
cepstral coefficients (25 dimensions) were analyzed from a simple
short-time Fourier transform of windowed speech waveforms with a
sampling frequency of 16 kHz and warping coefficient v = 0.42.

In the STRAIGHT vocoder, the original STRAIGHT smooth vo-
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Table 1. Number of network model parameters.

Model Num of params
WaveNet (g) and (h) 44,592,721
FFTNet (a) to (c) 2,251,857
Subband FFTNet (d) and (e) 1,857,105

(each subband)
Subband FFTNet with multiband input (f) 1,988,117

(each subband)

cal tract spectrum (1025 dimensions) and aperiodicity (1025 dimen-
sions) coefficients without mel-cepstral compression were directly
used. Although they are typically compressed as mel-cepstrum and
band aperiodicity coefficients [60] for dimensional reduction, the
original high-dimensional coefficients were used in the experiments
to evaluate the potential of the proposed approaches.

In FFTNet vocoders (a)—(c), L = 11 layers were introduced and
the receptive field was 2*! = 2048 samples, as used in the original
FFTNet [42]. A square-root Hann window-based overlapped SSB
filterbank was also introduced for subband FFTNet vocoders (d)—
(f). A decimation factor of M = 4 and division number N = 2M +
1 = 9 were also used. The length of the analysis and synthesis
prototype FIR filters was 1024 samples. The sampling frequency
of each subband waveform was (16/4 =) 4 kHz. The frequency
response of the filterbank is plotted in Fig. 7. In subband FFTNet
vocoders (d)—(f), L = 9 layers were used and the receptive field was
29 = 512 samples. The channel number of each FFTNet layer was
256 [42].

The dilation channel, residual channel, and skip channel of
WaveNet vocoders (g) and (h) were set to 512, 512, and 256, re-
spectively. Thirty layers (10 dilations x 3 cycles) with a kernel size
of 2 were used for the dilated causal convolution layers, giving a
receptive field of 3070 samples [17,28].

In the WaveNet and FFTNet vocoders, (1 + 1 + 25 =) 27-
dimensional vectors constructed from the continuous logarithmic
fo, voice/unvoice one-hot vector, and mel-cepstrum coefficients
(normalized to have a zero-mean and unit-variance) were used as
the acoustic features h. The WaveNet and FFTNet vocoders re-
quired 400,000 and 1,000,000 parameter updates, respectively, and
an Adam optimization algorithm [61] updated the neural network
parameters with a learning rate of 0.001. The minibatch sizes of
WaveNet, FFTNet, and subband FFTNet were 1 x 20,000, 5 x
5,000, and 5 x 1,250 samples, respectively. They were trained using
a single GPU of an NVIDIA Tesla P100. A value of 8 = 0.5 in
Eq. (2) was used for the noise shaping methods (c), (e), and (h) ac-
cording to the results of the WaveNet vocoder investigations [40,44].

The number of network model parameters in the FFTNet and
WaveNet vocoders is listed in Table 1. The FFTNet vocoders have
about 1/20 the number of the WaveNet vocoders, and the FFTNet
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Fig. 7. Frequency response of a square-root Hann window-based
overlapped SSB filterbank with decimation factor M = 4 and divi-
sion number N = 9 for proposed subband FFTNet vocoder.

vocoders can synthesize speech waveforms in real time. In partic-
ular, the subband FFTNet vocoders can realize more than M = 4
times faster generation as a result of the decimation and smaller net-
work, as in subband WaveNet [46,47].

4.2. Objective evaluations

To objectively evaluate the synthesized test set speech waveforms,
the signal-to-noise ratio (SNR) and the spectral distortion (SD) be-
tween the original waveform z(t) and the synthesized Z(t) were
computed:

(%)

T A 2
SNR = 10log,, < 21 80 ) :

i (x(t) = 2(1)?

L& 1y X(al)’
SD = — = 1 e 6
A; Fle<20 80 (7 ) - ©

where X (f,a) and X (f, a) are the short-time Fourier spectrums of
z(t) and #(t) in frame a for frequency bin f, and A is the total
number of frames. As in previous studies [28,44,47], a linear phase
compensation for each frame was introduced to calculate the SNR.
For acoustic feature analysis, the short-time Fourier transform anal-
ysis window function was also a Hann window with a frame length
of 25 ms, a frameshift of 5 ms, and ' = 257. To consider the
human auditory perception criterion in the objective evaluation, the
mel-cepstral distortion (MCD) was also computed. This is defined
as:

MCD = 10;% 23 " (c(b) — é(b))?, )

B
b=1

where c¢(b) and é(b) are the b-th mel-cepstral coefficients obtained
from X (f,a) and X (f,a) with @ = 0.42 and B = 24. The results
of the objective evaluations are presented in Table 2. In addition,
the training softmax loss scores averaged over 10,000 iterations are
given in Table 2 to evaluate the model accuracy. In subband methods
(d)—(f), the loss scores were averaged over all nine bands.

4.3. Subjective evaluations

To subjectively evaluate the proposed approaches, mean opinion
score (MOS) tests [62] were conducted. All 20 utterances of the test
set were used as the evaluation set. These were presented through
headphones to 10 Japanese adult native speakers without hearing
loss (20 utterances x10 conditions including the original test set
waveforms = 200 utterances). The MOS results are plotted in
Fig. 8.



Table 2. Results of objective evaluations of 20 test set utterances. Bold and italic entries indicate best scores of all six FFTNet vocoders and

of all nine methods, respectively.

[ Training softmax loss score [ SNR [dB] [ SD [dB] [ MCD [dB]
(a):vanilla FFTNet (baseline) 1.89 5204+0.26 | 10.29 £0.15 | 3.66 = 0.11
(b):FFTNet with residual connections 1.81 5.50 £0.25 9.68 £0.12 | 3.33 +£0.08
(c):FFTNet with noise shaping 2.19 4.00+047 | 819£0.05 | 2.84 + 0.06
(d):subband FFTNet 1.39 4.00 +0.27 | 10.76 £0.30 | 2.96 + 0.04
(e):subband FFTNet with noise shaping 1.55 290+£0.39 | 9.62£0.22 | 2.84 £0.06
(f):subband FFTNet with multiband input 1.35 5.80 +0.36 | 10.84 +£0.36 | 3.13+0.39
(g):vanilla WaveNet 1.50 6.60+0.36 | 9.16 +0.12 | 2.50 4+ 0.08
(h):WaveNet with noise shaping 1.80 5.50+£0.60 | 7.58 £0.06 | 2.00=£0.07
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Fig. 8. Results of MOS test with 10 listening subjects. “res,” “ns,
“sb,” and “mbi” denote residual connection, noise shaping, subband,
and multiband input, respectively.

4.4. Discussion

Compared with the vanilla FFTNet (a), the MOS test results (Fig. 8)
show that the synthesized speech quality can be significantly im-
proved by approaches (b)—(f), although they cannot match the per-
formance of the WaveNet with noise shaping (h). This verifies the
effectiveness of the noise shaping and subband approaches for FFT-
Net vocoders. In particular, FFTNet with noise shaping (c) signif-
icantly outperforms the STRAIGHT vocoder without mel-cepstral
compression (¢-test result with p = 0.049 < 0.05). The SNR results
for the noise shaping methods (c) and (h) were lower than those for
the methods without noise shaping (b) and (g), as the noise-shaped
speech signals are whiter than the original signals and the higher
loss scores indicate that they are more difficult to predict. However,
the synthesized speech quality of the methods with noise shaping
was successfully improved. In contrast, the subband speech signals
are covered by the square-root Hann window-based overlapped SSB
filterbank, and the lower loss scores suggest that they are more eas-
ily predicted [46]. The residual connections can successfully im-
prove the FFTNet model accuracy, and the noise shaping and sub-
band approaches can improve the synthesized frequency response.
In addition, the subband method with multiband input (f) can ef-
fectively compensate the phase shift between subbands because it

produces higher SNR scores than the other FFTNet vocoders. How-
ever, method (f) cannot realize higher-quality synthesis because the
synthesized speech waveforms include some additional noise sig-
nals in a higher frequency band compared with subband methods
with a single-band input. Although the subband methods with a
single-band input incorporate fewer noise components, the synthe-
sized speech quality is not as high because there is a lack of phase
shift compensation between subbands. Therefore, subband FFTNet
with multiband input should be further investigated to reduce the
noise components.

5. FUTURE WORK

To enhance the synthesized speech quality of FFTNet to that of
WaveNet and the original speech signals, alternative network
structure modifications such as the gated activation units used in
WaveNet [17] and signal processing techniques such as subband
methods with multiband input combined with noise shaping will be
investigated at higher sampling frequencies, such as 24 [18, 25, 34]
and 48 kHz [24, 47]. In addition, experiments using a female
speech corpus will be conducted. Furthermore, bandwidth ex-
tension (41,47, 63], 16 bit linear PCM raw audio prediction with
discretized logistic mixture likelihood [18,25,34,55] or a dual soft-
max layer [20], synthesis with mel-spectrogram input [25, 39], and
synthesis speed evaluations for FFTNet vocoders offer significant
scope for future studies.

6. CONCLUSIONS

To improve the synthesized speech quality of FFTNet vocoders
while retaining the small network model size required for real-time
synthesis, this paper has described the following four approaches. 1)
Residual connections were introduced into FFTNet to improve the
prediction accuracy. 2) Noise shaping and 3) subband approaches
were directly applied to FFTNet vocoders. 4) A subband FFTNet
vocoder with multiband input was used to directly compensate the
phase shift between subbands. The proposed approaches were eval-
uated through a series of objective and subjective experiments using
a Japanese male corpus with a sampling frequency of 16 kHz, and
the results were compared with those from STRAIGHT without
mel-cepstral compression as well as vanilla FFTNet and WaveNet
vocoders. The results suggest that the proposed approaches can
significantly improve the synthesized speech quality of FFTNet
vocoders. In particular, the proposed FFTNet vocoder with noise
shaping significantly outperforms the STRAIGHT vocoder.
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