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ABSTRACT

Most neural vocoders are limited to one type: either GAN
or diffusion-based. While state-of-the-art models like Vocos and
WaveNeXt use powerful ConvNeXt-based generators, they have
only been used in GAN frameworks and have limited performance
in multi-speaker settings. Moreover, diffusion models, despite train-
ing faster than GANs, have slow CPU inference. In this paper,
we introduce WaveNeXt 2, a unified ConvNeXt-based framework
compatible with both GAN and diffusion vocoders. Its core innova-
tion is residual denoising and sub-modeling, where each sub-model
progressively refines the waveform. Experimental results in the
multi-speaker dataset demonstrate the effectiveness of our approach:
(1) GAN-WaveNeXt 2 is much faster than HiFi-GAN and WaveFit,
and (2) Diff-WaveNeXt 2 also delivers much faster inference and
competitive synthesis quality compared with FastDiff with 4 steps.
The Diff-WaveNeXt 2 is very training-efficient, training in only 32
hours, making it ideal for resource-constrained applications.

Index Terms— Vocoder, Diffusion, GAN, ConveNext, unified
generator

1. INTRODUCTION

Neural vocoders have become fundamental components in modern
speech synthesis systems, responsible for generating high-fidelity
speech waveforms from acoustic features, such as mel-spectrograms.
Compared with fast autoregressive (AR) models, non-AR models
are stable and many models have been proposed. The fast and high-
fidelity Neural vocoders are broadly categorized into two main ar-
chitectures: generative adversarial network (GAN)- and denoising
diffusion probabilistic model (DDPM)-based neural vocoders. Each
approach offers distinct advantages and trade-offs in terms of syn-
thesis quality, inference speed, and training complexity.
GAN-based models [1, 2,3, 4,5, 6,7, 8, 9]introduce a generator-
discriminator framework to produce realistic waveforms with low
latency. However, they often require substantial computational re-
sources and are prone to instability during training. For example,
training HiFi-GAN for 2.5 million steps can take over 300 hours on
dual V100 GPUs. To mitigate these challenges, recent approaches,
such as SpecDiff [10], integrate diffusion components to stabilize
GAN training, while WaveFit [11] replaces stochastic noise injec-
tion with a fixed-point strategy to guide the synthesis process more
reliably. In contrast, diffusion-based neural vocoders [12, 13, 14, 15,
16, 17, 18, 19, 20] leverage an iterative denoising process to gener-
ate speech waveforms by reversing a noise diffusion process. These
models tend to be easier to train and more robust in certain scenarios
but typically suffer from slow inference and potential degradation
in output quality due to their multi-step generation pipeline. To im-
prove inference efficiency, several techniques have been proposed

to reduce the number of denoising steps. For instance, noise-level
limited sub-modeling [21] trains specialized sub-models for differ-
ent noise ranges, enhancing prediction accuracy. BDDM [22] further
accelerates inference by learning a compact noise schedule, enabling
high-quality synthesis in as few as four steps.

While numerous methods have been proposed to accelerate in-
ference speed, most fast neural vocoders are limited to either GAN
or diffusion models, limiting flexibility in real-world applications.
Inspired by ConvNeXt architectures originally developed for im-
age processing [23], recent generator designs in speech synthesis
have attracted attention for their architectural simplicity and com-
putational efficiency. Vocos [8] uses ConvNeXt blocks to predict
STFT spectra, then reconstructs the waveform with an inverse STFT
(iSTFT) layer. WaveNeXt [9] improves on this by using a train-
able linear projection to directly predict the waveform, which en-
hances quality while maintaining speed. However, these promis-
ing ConvNeXt-based generators have only been used in GAN-based
frameworks. While they offer faster inference than models like HiFi-
GAN, they still show limited performance in multi-speaker situa-
tions. This highlights the need for more versatile and robust solu-
tions.

To realize fast and high-fidelity neural vocoders for GAN and
diffusion models, we propose WaveNeXt 2, a unified ConvNeXt-
based generator framework compatible with both diffusion and GAN
vocoders. WaveNeXt 2 is the initial framework applicable to both
GAN- and diffusion-based fast neural vocoders within a single ar-
chitecture on a CPU.

* We introduce ConvNeXt-based residual denoising and sub-
modeling, in which each sub-model gradually performs de-
noising at each time step in inference. This enables a sin-
gle architecture to be effectively applied across both vocoder
types.

* We achieve significant improvements in real-time factor
(RTF): GAN-WaveNeXt 2 offers much faster inference with
comparable quality to HiFi-GAN, WaveFit, and the original
WaveNeXt, while Diff-WaveNeXt 2 achieves faster inference
and competitive quality relative to FastDiff.

Speech samples from experiments are available on the demo page'.

2. RELATED WORK

2.1. Non-AR Neural Vocoders

GAN-based neural vocoders: They use a generator and a discrimi-
nator in an adversarial process to produce high-quality speech. Mod-
els like HiFi-GAN [3] and MS-FC-HiFi-GAN [7] have improved
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Fig. 1: Training schemes of (a) GAN-WaveNeXt 2 and (b) Diff-WaveNeXt 2. In Diff-WaveNeXt 2, noise level @ is predefined with the noise

schedule predictor BDDM.

synthesis quality and inference speed through specialized architec-
tures. Despite these advancements, GANs still require significant
computational resources and can suffer from training instability.
While newer methods like SpecDiff [10] and WaveFit [11] attempt
to improve stability, GAN vocoders often have slow CPU inference
speeds.

Diffusion-based neural vocoders: They generate speech by re-
versing an iterative denoising process. The need for many steps to
achieve high quality slows down inference. To counter this, tech-
niques have been proposed to reduce the number of steps. FastDiff
[16] uses specialized convolutions and a noise schedule predictor,
while SpecGrad [15] employs an adaptive prior for better high-
frequency quality. Additionally, noise-level limited sub-modeling
[21] enhances prediction accuracy. However, even with these im-
provements, diffusion models still struggle with very few steps and
their inference speed on CPUs remains slower than that of GANs.

2.2. ConvNeXt in neural vocoders

ConvNeXt [23], originally introduced in the image domain, demon-
strated remarkable accuracy while maintaining architectural simplic-
ity and computational efficiency . According to its outstanding per-
formance, researchers have begun exploring its applications in the
speech domain [8, 9, 24].

Vocos [8] integrates ConvNeXt layers into a neural vocoder. It pre-
dicts high-resolution STFT spectra from input mel-spectrograms,
which are then converted into waveforms using an iSTFT layer. Vo-
cos achieves inference speeds up to ten times faster than HiFi-GAN
on a CPU.

WaveNeXt [9] further improves upon this by replacing the iSTFT
layer in Vocos with a trainable linear projection layer that directly
predicts waveform samples, eliminating the need for spectral repre-
sentations. This modification preserves the fast inference speed of
Vocos while enhancing speech quality.

3. PROPOSED APPROACH

We propose WaveNeXt 2, a unified framework that integrates
ConvNeXt-based residual denoising sub-model into both GAN-
based and diffusion-based architectures.

3.1. ConvNeXt-based residual sub-modeling

The architecture of the WaveNeXt-based generator is illustrated in
Figure 2a. We retain the overall structure of the original WaveNeXt
model [9], where the generator takes a mel-spectrogram as input and
directly outputs the synthesized speech signal yo. However, to enable
a unified structure suitable for both GAN and diffusion frameworks,
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Fig. 2: Overview of proposed architectures: (a) WaveNeXt-based
generator where n is the number of ConvNeXt blocks. n = 8 is used
in all the proposed models. (b) Sub-model for both GAN-WaveNeXt
2 and Diff-WaveNeXt 2, where ¢ is the number of iterations steps.

we modify the generator to predict the noise component n; at each
time step instead of generating the waveform directly. As shown in
Fig. 2, the unified architecture comprises two main components: an
STFT module and a WaveNeXt-based generator.

We first transform the input waveform ;1 into its STFT repre-
sentation using a Hann window. The STFT is computed with center-
ing and produces a complex-valued spectrogram. The resulting com-
plex spectrogram is then truncated along the temporal axis to match
the duration of the target mel-spectrogram. The real and imaginary
parts of the complex-valued STFT are separated for further process-
ing. To form a real-valued spectral representation compatible with
the mel-spectrogram input, we concatenate the full real part of the
STFT with the imaginary part excluding the DC and Nyquist com-
ponents (i.e., omitting the first and last frequency bins). This results
in an STFT-spec, which along with the mel-spectrogram, is fed into
the WaveNeXt-based generator to predict the noise component n¢—1
at the current time step.

3.2. GAN-based model: GAN-WaveNeXt 2

The proposed GAN-WaveNeXt 2 is illustrated in Figure la. Dur-
ing training, we adopt the fixed-point iteration strategy introduced
in WaveFit [25], which differs from conventional DDPMs by deter-
ministically guiding each denoising step toward the target waveform,
rather than relying on stochastic noise removal. The training process
is structured as follows: In each iteration, the sub-model receives a
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Fig. 3: Inference procedure of Diff-WaveNeXt 2 with 4 sub models
for 4 iterations.

mel-spectrogram and a noisy waveform y; as input, and predicts the
next denoised waveform y;_1. This process is repeated for T steps
until the final waveform yq is synthesized.

While our training pipeline is similar to WaveFit’s, we have sim-
plified it. WaveFit’s original pipeline gradually converts initial input
noise into clean speech based on fixed-point iteration, but we found
that a ”denoising” constraint is not necessary in the training loss,
meaning initial input noise isn’t required. We also omitted Wave-
Fit’s gain adjustment modules as they are redundant with the STFT
loss. Preliminary experiments confirmed that GAN-WaveNeXt 2
performs effectively without either the initial input noise or the gain
adjustment modules, allowing for a simplified training process.

3.3. Diffusion-based model: Diff-WaveNeXt 2

The architecture of the proposed Diff-WaveNeXt 2 is illustrated
in Figurelb. Rather than following the original DDPM training
strategy, we adopt the training strategy proposed in [21], in which
each sub-model is trained separately, each responsible for denoising
within a specific range of noise levels. To implement this, we divide
the denoising task into four stages and construct four sub-models.
Each sub-model is conditioned not only on the mel-spectrogram but
also on a specific noisy audio, denoted by x; = v/a;xo ++/1 — aze,
where € represents Gaussian noise, xo is original clean waveform
and @ is the cumulative noise level predicted for step ¢ .

The inference process is illustrated in Figure 3. The mel-
spectrogram and the corresponding noise level @ are provided as
inputs to the respective sub-models. Starting from an initial noise
signal n, the four sub-models are applied sequentially, each respon-
sible for denoising within a specific noise level range. After four
sub-model, the final output is the synthesized speech waveform yq.
According to [21], the high-frequency details in synthesized speech
are often lost when the noise schedule contains unnecessary noise,
especially with a low number of iterations. To restore these missing
components, we also use the time-invariant spectral enhancement
post-filtering technique introduced in the same paper.

4. EXPERIMENTS

All the models were implemented using PyTorch [26] and trained
on NVIDIA A100 GPUs with 40 GB of memory.

4.1. Experimental conditions

Dataset: We trained all the models on LibriTTS-R [27], which is
a multi-speaker English corpus of approximately 585 hours of read
English speech at 24 kHz sampling rate. We trained model from the
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Fig. 4: Results of MOS tests with 20 listening subjects. The confi-
dence level is 95%. WN means WaveNeXt.

combination of the “train-clean-100” and “train-clean-360" subsets
at 24 kHz sampling.

Model and training setting: For GAN-based models, we intro-
duced unofficial implementations of HiFi-GAN V1% and WaveFit’.
For diffusion-based models, we introduced an official implemen-
tation of FastDiff*. To implement WaveNeXt-based generator, we
introduced an official implementation of Vocos® and replaced the
STFT layer with linear layer. For all the models, 128-dimensional
mel-spectrograms were used as input acoustic features in WaveFit.
To ensure a fair comparison with baseline systems, we matched the
hop sizes of the proposed models to those of the corresponding base-
lines: GAN-WaveNeXt 2 and HiFi-GAN adopted a hop size of 300,
consistent with WaveFit, while Diff-WaveNeXt 2 used a hop size
of 256, matching that of FastDiff. In GAN-WaveNeXt 2, we em-
ployed the same discriminators and loss functions as WaveFit to en-
sure training stability and consistency across adversarial learning.
All losses follow the same definitions as those in WaveFit [11]. In
Diff-WaveNeXt 2, we trained four independent sub-models to han-
dle different noise levels. The noise schedule used for training was
predicted by a noise schedule predictor adapted from BDDM [22].
The resulting noise schedule with 4 steps was [1.0e—04, 2.8e—02,
5.6e—01, 9.1e—01].

Evaluation criteria: To evaluate the naturalness of the synthe-
sized speech subjectively, we conducted mean opinion score (MOS)
tests [28] using a five-point scale. A total of 20 paid native English
speakers participated in the evaluation. All subjects use headphones
in a quiet environment to listen. In total, each participant evaluated
120 samples (20 utterances X 6 models). In addition subjective eval-
uation, we employed objective evaluation methods to assess speech
quality. We measured UTMOS [29] and NISQA [30], which are au-
tomatic MOS prediction models. And we adopted two widely used
signal-based objective metrics: mel-cepstral distortion (MCD) [31]
and log FO root-mean-square error (RMSE), both of which provide
quantitative assessments of spectral and prosodic accuracy. For in-
ference speed, we measured RTFs on an NVIDIA A100 GPU and
an AMD EPYC 7542 CPU (1 core).

Ablation study: For Diff-WaveNeXt 2, we also implemented
our model within the original FastDiff architecture without sub-
modeling. However, the performance was suboptimal compared to
our unified framework. Therefore, we introduced sub-modeling train
strategy [21] to realize better performance. The complete ablation
results and comparisons are summarized in Table 1.

Zhttps://github.com/kan-bayashi/ParallelWave GAN
3https://github.com/yukara-ikemiya/wavefit-pytorch
“https://github.com/Rongjiehuang/FastDiff
Shttps://github.com/gemelo-ai/vocos



Table 1: Results of mel-cepstral distortion (MCD), log FO root-mean-square error (RMSE), UTMOS and NISQA columns represent the

means and standard deviations. Real-time factor (RTF) of the inference. Proposed methods are described in bold.

RTF(GPU) | RTF(CPU)| NISQAt  UTMOST  MCD|  logFORMSE| Model size

Ground Truth - - 408£0.19  4.11£0.09 - -

WaveNeXt (1 iteration) 0.0022 0.06 316£024 320£0.12  092£052 0312015 14.98M
WaveFit (2 iterations) 0.0111 2.15 380£022 389£0.11 103£054 0322015 15.51M
GAN-WaveNeXt 2 (2 iterations) 0.0033 0.10 3774020 388+0.11 097£054 0312015 29.97M
WaveFit (3 iterations) 0.0151 3.22 3912022 398+010 1.01£054 0322013 15.51M
GAN-WaveNeXt 2 (3 iterations) 0.0054 0.15 3924022 391£0.10 096+057  030%0.18 44.96M
WaveFit (4 iterations) 0.0213 428 3972021 399+010 101£052 0322011 15.51M
GAN-WaveNeXt 2 (4 iterations) 0.0066 0.20 401£020 404£009 095£0.53  0300.11 59.94M
WaveFit (5 iterations) 0.0226 5.36 402+019 404£009 090£052  031+0.13 15.51M
GAN-WaveNeXt 2 (5 iterations) 0.0090 0.24 401£0.19  404£009 095051  030+0.12 74.93M
HiFi-GAN V1 0.0110 0.80 399£022 405+011 234£083  0.16%0.01 13.9M
FastDiff wo/ sub-modeling 0.0625 0.80 343£020 350£0.11 476+0.74  0.16%0.01 15.63M
Diff-WaveNeXt 2 wo/ sub-modeling ~ 0.0335 0.16 345£0.19 355+009 7.34+1.46  0.16%0.01 14.42M
FastDiff w/ sub-modeling 0.0282 0.80 367£020 378+006 432£069  024%0.33 62.52M
Diff-WaveNeXt 2 0.0164 0.16 381£0.19 387+005 4.16+0.88  0.12£0.01  57.68M

Table 2: Training time of models in a single GPU

Model Training time
GAN-WaveNeXt 2 410 hours
HiFi-GAN 270 hours
WaveFit 410 hours
Diff-WaveNeXt 2 32 hours
Fastdiff 96 hours

4.2. Results and discussion

We evaluated the performance of our proposed models in terms
of both the inference speed and synthesized speech quality. The
RTFs on a GPU and a CPU, as well as objective speech quality
metrics—log FO RMSE, Mel Cepstral Distortion (MCD), UTMOS,
and NISQA—are shown in Table 1. The evaluations were conducted
using 4,824 samples from the LibriTTS-R [27] “test-clean-100" sub-
set. Additionally, the results of MOS tests obtained from 20 samples
of the same subset are used to assess subjective quality. These are
shown in Figure 4.

The results demonstrate that GAN-WaveNeXt 2 achieves UT-
MOS and NISQA scores comparable to those of WaveFit, while
drastically improving the inference speed. Specifically, GAN-
WaveNeXt 2 achieves a 70% reduction in RTF on GPU and a 90%
reduction on CPU, compared to WaveFit. As illustrated in Figure 4,
GAN-WaveNeXt 2 with 4 iterations achieves comparable MOS
scores with both WaveFit with 5 iterations and HiFi-GAN, while
also surpassing HiFi-GAN in terms of the inference speed—offering
a 40% improvement on GPU and 75% on CPU. Although GAN-
WaveNeXt 2 performs higher log FO RMSE compared to HiFi-GAN,
it performs better in terms of MCD, indicating superior spectral fi-
delity.

For the diffusion-based models, Diff-WaveNeXt 2 also pro-
duces synthesized speech quality comparable to that of FastDiff.
By adopting the fixed noise conditioned sub-model training strategy
proposed in [21], the speech quality is further improved. Notably,
Diff-WaveNeXt 2 with sub-modeling achieves lower log FO RMSE
than HiFi-GAN. Compared to FastDiff, Diff-WaveNeXt 2 offers
a 36% reduction in RTF on GPU and an 80% reduction on CPU,
significantly enhancing inference efficiency.

All of the models’ training times are detailed in Table 2. GAN-
based models generally require substantial computational resources

to train to convergence. For example, HiFi-GAN takes around 270
hours, while WaveFit and our proposed GAN-WaveNeXt 2 both re-
quire approximately 410 hours. In contrast, diffusion-based mod-
els are significantly more efficient. Our proposed Diff-WaveNeXt 2
requires only 32 hours of training, a major reduction compared to
the 96 hours typically needed for FastDiff. This notable decrease in
computational and time costs makes Diff-WaveNeXt 2 highly suit-
able for large-scale or resource-constrained applications, as it main-
tains acceptable speech synthesis quality with a much lighter training
burden.

Although sub-modeling improves training efficiency and perfor-
mance, it also increases the total size of the model, as described in
Table 1. The overall parameters will grow with the number of sub-
models. This is an issue of the proposed methods.

5. CONCLUSION

This paper introduces WaveNeXt 2, a unified ConvNeXt-based gen-
erator with a residual denoising sub-modeling structure that is the
first to be compatible with both GAN- and diffusion-based neural
vocoders. Our approach successfully addresses the performance lim-
itations of the original GAN-based WaveNeXt in multi-speaker sce-
narios, where it previously underperformed compared to HiFi-GAN.
By extending the use of ConvNeXt-based generators beyond the
GAN framework, WaveNeXt 2 allows for a direct, intuitive com-
parison between the two major architectures. Our results demon-
strate that both GAN-WaveNeXt 2 and Diff-WaveNeXt 2 achieve
high performance. Specifically, GAN-WaveNeXt 2 provides signifi-
cantly faster inference, especially on a CPU, while maintaining syn-
thesis quality comparable to HiFi-GAN and WaveFit. Concurrently,
Dift-WaveNeXt 2 delivers much faster CPU inference and superior
perceptual quality compared to a 4-step FastDiff model, effectively
outperforming it in both efficiency and quality. This unified frame-
work offers flexible choices for various applications: for fast deploy-
ment in resource-constrained environments, Diff-WaveNeXt 2 is the
ideal choice, whereas for scenarios demanding the highest synthesis
quality, GAN-WaveNeXt 2 is the better option.
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