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Abstract—In practical text-to-speech (TTS) for pitch accent languages,
such as Japanese, high-fidelity synthesis with correct prosody requires
not only a phoneme sequence but also accentual information. Although
accentual information can be obtained from accent dictionaries, words not
included in the dictionaries and accent sandhi are sometimes synthesized
with incorrect prosody, and manual registration of huge amounts of
accent data is costly. Additionally, previous machine learning-based data-
driven accent information estimation approaches for TTS also require
huge quantities of handcrafted accentual labels during training. This
paper proposes a data-driven prosody prediction method for Japanese
TTS that uses Japanese BERT and does not require any accentual
labels during training. A Japanese TTS acoustic model with mora-level
(katakana sequence) input is first trained and mora-level fundamental
frequency values (fo), which directly correspond to the prosody, are
extracted for the training data using forced alignment. Then, a pre-
trained Japanese BERT is finetuned for the mora-level fo prediction task
with word sequences including kanji and the corresponding katakana
sequences as input and the mora-level fo extracted using forced align-
ment as the prediction target. During TTS inference, the mora-level
fo sequence predicted by the finetuned Japanese BERT is input to
the TTS acoustic model along with the katakana input, and correct
prosodic synthesis can be realized thanks to this predicted fo sequence.
Experimental results demonstrate that the proposed method can realize
the same synthesis quality and higher accent correctness compared with
conventional neural TTS models with accentual labels.

Index Terms—BERT, fundamental frequency, pitch accent language,
prosody prediction, text-to-speech

I. INTRODUCTION

Recent advancements in neural network technology have realized
high-fidelity text-to-speech (TTS) synthesis [1]–[6]. Typically, input
texts are converted into phoneme sequences by a text analyzer
(G2P), and speech waveforms are then synthesized from the phoneme
sequences. By introducing pre-trained Bidirectional Encoder Repre-
sentations from Transformers [7] (BERT) [8] based on self-supervised
learning using huge amounts of external text data into neural TTS,
additional grapheme or word sequence input has been shown to
improve the quality and prosody of synthetic speech [9]–[14].

In neural TTS for pitch accent languages, such as Japanese1,
not only the phoneme sequence but also accentual information
is required for high-fidelity and prosodically-correct synthesis [5],
[15], [16]. Although accentual information can be obtained from
accent dictionaries, words not included in the dictionaries and ac-
cent sandhi [17] are sometimes synthesized with incorrect prosody.
Moreover, manual registration of huge amounts of accent data is
costly. To predict accentual information from input text for Japanese
neural TTS, machine learning-based data-driven methods have been

1(1) Many words in Japanese are typically written in kanji, a logographic
script based on traditional Chinese characters, and written sentences typically
contain a mix of kanji with hiragana and katakana (syllabary characters). Most
kanji have several different possible readings, and the correct one including
both the phonetic sequence and the pitch accent can usually be determined
by the reader from context. (2) Each katakana character represents a mora,
and the phonetic reading of a katakana sequence is unambiguous, but pitch
accent information is not present. This paper addresses the latter problem.

investigated [18]–[21]. However, these methods also require a huge
amount of handcrafted accentual labels for training. Following the
success of PnG BERT for English neural TTS [13], Japanese PnG
BERT with tone prediction [22] has also been investigated. In this
method, the mel-spectrogram decoder and tone predictor are jointly
finetuned using a pre-trained Japanese PnG BERT with Japanese
word and phoneme sequence input. However, this method does
not outperform a standard neural TTS model with accentual labels
in terms of synthesis quality and accent correctness because the
predicted tones are not explicitly used during inference. This method
also requires accentual labels for training the tone predictor.

Compared with these previous approaches [18]–[22], one ideal
method would be to automatically predict accent nucleus from input
Japanese text for multi-speaker Japanese neural TTS [23] using a
huge amount of external text data (large language models [24]–
[26]) without handcrafted accentual labels. As an initial investigation,
we propose a mora-level fundamental frequency (fo [27]) predictor,
based on pre-trained Japanese BERT, for single-speaker TTS. In the
proposed method, a Japanese TTS acoustic model with mora-level
(katakana sequence) input is first trained, and mora-level fo, which
is a physical quantity analyzed by signal processing that directly
corresponds to the prosody, is extracted for the training data using
forced alignment. Then, a pre-trained Japanese BERT is finetuned
on word sequences with kanji and their corresponding katakana
sequences to learn to predict the mora-level fo extracted using forced
alignment. During inference, the mora-level fo predicted by the
finetuned Japanese BERT is input to the TTS acoustic model along
with the katakana input. Compared with the conventional Japanese
PnG BERT that requires accentual labels during training [22], the
results of the experiments conducted in Sec. IV demonstrate that the
proposed method can realize the same synthesis quality and higher
accent correctness without requiring accentual labels. Speech samples
from the experiments have been made available2.

II. PROBLEM STATEMENT

In Japanese, accent patterns affect speech prosody significantly,
as shown in Fig. 1 where two sentences with identical phonemes
have different prosodic patterns (indicated by “[” for initial rising and
“]” for pitch drop) that distinguish their meanings (“chopsticks” vs
“edge”). In Japanese neural TTS, input texts including kanji, hiragana,
katakana, numbers, etc. are converted to phonetic representations
as either (b) katakana or (c) phonemes as shown in Fig. 1 using
G2P [16]. Additionally, accentual labels may be added by using
accent dictionaries, and (b) or (c) are converted to (d) katakana +
accent or (e) phoneme + accent in Fig. 1. Therefore, accentual labels
are typically required to synthesize the speech of these two texts
with correct prosody using the conventional Japanese neural TTS
models [5], [15], [16]. In the proposed method, on the other hand, the
speech of these two texts can be synthesized with correct prosody by

2https://ast-astrec.nict.go.jp/demo samples/bert tts icassp2025/
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Sentence 1 Sentence 2 Unit
(a) kanji + hiragana この 箸 を 持って ください この 端 を 持って ください Grapheme
   (Translated to English)   (Please take these chopsticks)   (Please hold the edge)
(b) katakana コ ノ ハ シ オ モ ッ テ ク ダ サ イ コ ノ ハ シ オ モ ッ テ ク ダ サ イ Mora
(c) phoneme k o n o h a sh i o m o cl t e k u d a s a i k o n o h a sh i o m o cl t e k u d a s a i Phoneme
(d) katakana + accent コ [ ノ ハ ] シ オ モ ] ッ テ ク [ ダ サ ] イ コ [ ノ ハ [ シ オ モ ] ッ テ ク [ ダ サ ] イ Mora
(e) phoneme + accent k o [ n o h a ] sh i o m o ] cl t e k u [ d a s a ] i k o [ n o h a [ sh i o m o ] cl t e k u [ d a s a ] i Phoneme

Fig. 1. Example of Japanese texts with the same phonetic reading that differ only in prosody. “[” and “]” indicate initial rising and accent nucleus, respectively.
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Fig. 2. (a) Network architecture of non-autoregressive Japanese neural TTS
model with katakana input. During training, katakana token durations are
obtained by monotonic alignment search [28], and mora-level log fo is
obtained through forced alignment. During inference, the model uses mora-
level log fo predicted by finetuned Japanese BERT. (b) Inference procedure
of the proposed method.

using (a) kanji + hiragana (word sequence) and (b) katakana sequence
input because these two kanji characters, “chopsticks” and “edge,”
are included in the training data for TTS, as shown in the speech
samples2.

III. PROPOSED METHOD

A. Training Japanese TTS acoustic model with katakana sequence
input and extracting mora-level log fo of training data

In the proposed method, a Japanese neural TTS acoustic model
with katakana sequence input (instead of phoneme sequences) with-
out accentual labels is first trained because accent information for
Japanese is defined in mora units that correspond well to katakana
units [16]. The acoustic model is based on a non-autoregressive
encoder-decoder model as in [29]–[31] (Fig. 2(a)). During training,
we introduce an alignment training framework [32] that uses mono-
tonic alignment search (MAS) [28]. Therefore, the loss function for
training the acoustic model is the same used in [31]. After training,
mora-level log fo of the training data can be extracted using forced
alignment, which is then used to finetune a pre-trained Japanese
BERT for the mora-level log fo prediction task as described in the
next subsection. The mora-level log fo is a physical quantity analyzed
by signal processing which directly corresponds to the prosody.
However, this acoustic model by itself cannot correctly synthesize
the speech of the two texts in Fig. 1 from their katakana sequences
because no accentual labels are used.

B. Finetuning of pre-trained Japanese BERT for predicting mora-
level log fo considering word sequence input

A Japanese BERT is pre-trained using a huge amount of Japanese
text from an external corpus with the same standard multitask
learning of next sentence prediction and masked language modeling

Pre-trained Japanese BERT

Text KatakanaG2P
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Fig. 3. Proposed Japanese BERT-based mora-level log fo prediction model
with word sequences including kanji and their corresponding katakana se-
quence input. CLS and SEP are special tokens for start and end of a sentence
used in BERT.

as vanilla English BERT [8]. For finetuning, we augment the pre-
trained Japanese BERT with an additional task-specific module for
mora-level log fo prediction. This module, which is trained together
with BERT during finetuning, consists of a single fully connected
layer with an output dimension of 1 for each time step. The complete
model is then finetuned for multitask learning of token prediction
and log fo prediction (Fig. 3). The input to this model is a word
sequence including kanji and its corresponding katakana sequence.
The token prediction loss Lt is defined as the cross-entropy loss:
Lt = −∑T

t=1

∑V
v=1 τ(t,v) log(ŷ(t,v)), where T is the number of

tokens in the sequence, V is the size of the vocabulary, τ(t,v) is
the ground truth token label (0 or 1), and ŷ(t,v) is the predicted
probability for token v at position t. The log fo prediction loss Lf is
calculated using the mean squared error: Lf = 1

T

∑T
t=1(ϕt − ϕ̂t)

2,
where ϕt represents the ground truth log fo obtained using forced
alignment and ϕ̂t is the predicted log fo for the token at position t.
The total loss Ltotal for finetuning is a weighted sum of Lt and Lf :

Ltotal = (1− α)Lt + αLf , 0 ≤ α ≤ 1, (1)

where α is a weighting factor. When α = 0, the model only conducts
token prediction, while α = 1 solely focuses on log fo prediction.

C. Inference from word sequences including kanji and corresponding
katakana sequences

During inference of the proposed method, an input Japanese text
is converted into a word sequence using a word segmenter, and
into a katakana sequence using a G2P. Then, the mora-level log fo
corresponding to each katakana token is predicted from the word
sequence and katakana sequence input by the finetuned BERT. The
katakana sequence and predicted mora-level log fo are then input to
the Japanese TTS acoustic model (Fig. 2(b)), and the output speech
waveform can be obtained using a neural vocoder. Although no
accentual labels are introduced throughout the training and inference
of the proposed method, correct prosodic synthesis can be realized.



TABLE I
ACOUSTIC AND INTELLIGIBILITY METRICS FOR TEXT-TO-SPEECH METHODS: MCD, log fo RMSE, AND CER FOR FEMALE AND MALE VOICES

MCD [dB] log fo RMSE CER [%]
Method name Female Male Female Male Female Male
Original - - 0.4 1.2
Phoneme + accent 5.37 ± 0.52 4.61 ± 0.68 0.21 ± 0.06 0.20 ± 0.07 0.5 1.1
Katakana + accent 5.47 ± 0.66 4.68 ± 0.54 0.22 ± 0.06 0.19 ± 0.05 0.4 1.0
Katakana 5.58 ± 0.66 4.70 ± 0.64 0.20 ± 0.06 0.19 ± 0.05 1.9 2.2
Katakana-BERT (Proposed) 5.30 ± 0.59 4.69 ± 0.66 0.19 ± 0.06 0.19 ± 0.05 1.1 1.9
Note: Acoustic metrics - MCD: Mel-Cepstral Distortion, log fo RMSE: Root Mean Square Error of log fo.

Intelligibility metric - CER: Character Error Rate from ASR. Lower values indicate better performance.
Values for MCD and log fo RMSE are presented as mean ± standard deviation.

TABLE II
COMPARISON OF ACCENT EVALUATION SCORES FOR DIFFERENT METHODS

ACROSS IN-DOMAIN AND OUT-OF-DOMAIN DATASETS

Score
Hi-Fi-CAPTAIN JVS-Parallel

Method (in-domain) (out-of-domain)
Phoneme + accent 3.67 ± 0.14 3.16 ± 0.16
Katakana + accent 3.62 ± 0.15 3.17 ± 0.16
Katakana 3.17 ± 0.20 2.16 ± 0.19
Katakana-BERT (Proposed) 3.80 ± 0.10 3.25 ± 0.15
Note: Scores are presented as mean ± 95% confidence interval.

IV. EXPERIMENTS

To evaluate the proposed method, experiments were conducted with
a sampling frequency of 24 kHz. All the neural network models were
implemented by modifying ESPnet2-TTS [33] on PyTorch [34] and
trained using an NVIDIA Tesla A100 GPU with 40 GB of memory.

A. Experimental conditions
Dataset: The experiments were conducted using the Japanese

speech dataset (one female and one male speaker) of the Hi-Fi-
CAPTAIN corpus released by NICT [35], with over 22 hours per
speaker (one female, one male). The training set consisted of 18,655
parallel utterances each for the female and male speakers, with an
additional 201 and 203 non-parallel utterances, respectively. 100
utterances were used for the validation set and the same number
was used for the test set, as specified in [35]. 80-dimensional
mel-spectrograms bandlimited to 7600 Hz were used. The STFT
length and shift length were 1024 and 256 samples, respectively.
For the pre-trained Japanese BERT, we used the open-sourced NICT
Japanese BERT model with a vocabulary size of 100,000 tokens,
trained on Japanese Wikipedia articles3. To ensure complete coverage
of all single-character katakana tokens, which is crucial for the
mora-level processing, we added four katakana characters that were
not included in the original vocabulary. These additional katakana
characters were inserted by replacing unused tokens in the pre-trained
vocabulary. This modification was necessary to accommodate the
unique approach of single-character katakana tokenization. Notably,
there were no out-of-vocabulary words in the Hi-Fi-CAPTAIN corpus
text with respect to the pre-trained BERT vocabulary.

For finetuning of the pre-trained Japanese BERT, we created a
dataset using the trained TTS acoustic model with katakana input. We
performed forced alignment on the training data to obtain mora-level
alignments and extracted log fo values for each mora. The resulting
dataset comprises input text (with kanji), katakana representation, and
corresponding mora-level log fo values and was used to finetune the
pre-trained Japanese BERT model.

Model setting: All models were based on a modified version of
the Fastspeech 2-based acoustic model implemented in ESPnet2-

3https://alaginrc.nict.go.jp/nict-bert/NICT BERT-base
JapaneseWikipedia 100K.zip

TTS [33]. Instead of a Transformer-based encoder and decoder,
ConvNeXt-based ones with the same parameters as used in [5] were
introduced. Additionally, MAS [28] was introduced as in [31]. The
Harvest algorithm [36] was used for fo analysis. The following four
Japanese neural TTS acoustic models were investigated:
(1) Phoneme + accent: As a baseline model, the neural TTS model
with phoneme and accentual sequence input (Fig. 1(e)) was trained.
The G2P function was based on pyopenjtalk (OpenJtalk [37]) and
enhanced with prosody symbols [16] as used in [33].
(2) Katakana + accent: As another baseline model, the neural TTS
model with katakana and accentual sequence input (Fig. 1(d)) was
also trained with OpenJtalk-based G2P.
(3) Katakana: To investigate the effectiveness of the proposed
method, the neural TTS model with katakana sequence input
(Fig. 1(b)) was trained with OpenJtalk-based G2P.
(4) Katakana-BERT (proposed): The proposed model with
word sequences and their corresponding katakana sequence input
(Fig. 1(a)+(b)) was trained.

Therefore, the only difference between (3) Katakana-TTS and (4)
Katakana-BERT-TTS is the mora-level log fo used during inference
(Fig. 1(a)). MS-FC-HiFi-GAN [38], [39] was used as the neural
vocoder. The acoustic models and neural vocoder for each speaker
were separately trained and jointly finetuned as in [33].

For the BERT component of the proposed model, we finetuned pre-
trained Japanese BERT with 12 layers and 768-dimensional hidden
states, as illustrated in Figure 3. The finetuning process used the
AdamW optimizer [40] with an initial learning rate of 1× 10−4, in-
corporating a warm-up schedule that gradually decreased the learning
rate. We trained the model for 500 epochs, selecting the best model
based on the lowest training loss. The tokenization process followed
the NICT-BERT approach, ensuring consistency with the pre-trained
model. In the experiments, α in Eq. (1) was set to 0.5. Preliminary
experiments with α = 1 (discarding token prediction) resulted in
lower fo prediction accuracy, indicating that joint optimization of
token and log fo prediction enhances the model’s performance by
capturing contextual information more effectively.

Evaluation criteria: Mel-cepstral distortion (MCD), log fo root-
mean-square error (RMSE), and character error rate (CER) of auto-
matic speech recognition (ASR) were used as objective evaluation
criteria, following [4], [5], [33]. The MCD and log fo RMSE were
calculated by the ESPnet2-TTS toolkit [4], [33]. The CER was calcu-
lated by the Transformer-based Japanese ASR model trained using the
CSJ corpus [41] used in [5], [33]. To evaluate the synthesized speech
subjectively, mean opinion score (MOS) tests [42] were conducted.
Each subject evaluated 400 samples: 40 utterances × 5 conditions ×
2 speakers (female and male). The naturalness of each sample was
rated on a five-point scale: (1) bad, (2) poor, (3) fair, (4) good, and
(5) excellent. Twenty adult Japanese native speakers without hearing
loss, who can judge correct Japanese accent, participated using



4.51 3.87 3.90 3.32 3.924.47 3.96 3.91 3.65 3.97
1

2

3

4

5
Female Male

Original Katakana Katakana
-BERT

(Proposed)

Phoneme
+ accent

Katakana
+ accent

M
ea

n
 o

p
in

io
n
 s

co
re

Fig. 4. MOS comparison of text-to-speech methods for female and male
voices. Error bars indicate 95% confidence intervals.

0.2

0.3

0.4

0.5

0.6

0 5000 10000 15000 20000
Dataset size

log fo  predictor in neural TTS

acoustic model with katakana input
log fo  predictor finetuned with

Japanese BERT (proposed)

lo
g
𝑓
o

 M
S

E

log 𝑓o

log 𝑓o

Fig. 5. Relationship between dataset size and log fo prediction accuracy:
Comparison of proposed BERT-based log fo predictor (Fig. 3) and log fo pre-
dictor in Japanese neural TTS acoustic model with katakana input (Fig. 2(a)).

headphones. To assess the accuracy of the synthesized accents, a
Japanese native speaker from the standard dialect region (Tokyo), who
can also judge correct Japanese accent, conducted expert annotation
of the synthesized samples using a four-point scale: (4) no discernible
accent issues, (3) one accent appears slightly incorrect, (2) one accent
is noticeably incorrect, and (1) multiple accents are incorrect. This
evaluation used both in-domain (Hi-Fi-CAPTAIN) and out-of-domain
(JVS Parallel [43]) datasets. The JVS Parallel test set contains 100
samples without ground truth audio. There were also no out-of-
vocabulary words in the JVS parallel text with respect to the pre-
trained BERT vocabulary. Additionally, to assess the impact of dataset
size, we evaluated log fo prediction accuracy for both the Katakana-
TTS and proposed BERT-based models trained on various subset
sizes (0.5k, 1k, 2k, 5k, 10k, and all utterances) of the training data.

B. Experimental results

Table I presents acoustic and intelligibility metrics for various
TTS methods including the proposed Katakana-BERT approach. The
proposed method demonstrates competitive or superior performance
in acoustic metrics in this experiment, particularly for the female
voice used in this study. Notably, the proposed approach, which does
not use explicit accentual labels, achieves performance comparable
to or surpassing methods that utilize such information, underscoring
the effectiveness of the proposed method in implicitly learning and
reproducing proper Japanese accentuation through the BERT-based
and mora-level fo prediction.

The MOS results in Figure 4, evaluated by Japanese native
speakers, show statistically significant improvement of the proposed
Katakana-BERT method over the basic Katakana-TTS model. The
proposed method performs comparably to approaches using explicit
accentual information, further validating its effectiveness in repro-
ducing natural Japanese prosody without explicit accentual labels.

The accent scores in Table II show that the proposed method out-
performs all others, including those using explicit accent information.
This is because some labels from OpenJtalk are incorrect. While all
methods show worse performance in the out-of-domain setting, likely
due to JVS’s longer sentences and numerous foreign proper nouns, the
proposed approach exhibits more robust performance across domains,
suggesting effective implicit learning of accentuation patterns.

Fig. 5 illustrates the relationship between dataset size and log fo
prediction accuracy. The proposed method consistently outperforms
the conventional model across all dataset sizes, maintaining higher
accuracy even with smaller datasets. This suggests effective leverag-
ing of pre-trained BERT knowledge. The performance curves indicate
potential for further improvement with increased data, highlighting
scalability for future enhancements in prosody prediction.

Consequently, the effectiveness of the proposed method is validated
in the single-speaker TTS case, demonstrating competitive or superior
performance in acoustic metrics and accent evaluation compared to
the conventional approaches using explicit accentual labels.

C. Discussion
The main limitation of our approach is that words missing from the

BERT vocabulary and TTS training data cannot be synthesized with
correct prosody; however, this limitation highlights potential areas for
improvement. Future work includes investigating multi-speaker TTS
and integrating large language models to expand the vocabulary and
voice types that can be synthesized with accurate prosody.

While we explored other pre-trained language models such as
BART [44], BERT proved to be particularly well-suited for our mora-
level fo prediction task. The key advantage of BERT lies in its
architecture, which maintains the same sequence length for input
and output, aligning perfectly with our requirement of predicting
fo values for each mora in the input sequence. This one-to-one
correspondence between input and output elements facilitates more
straightforward and accurate predictions, making BERT an ideal
choice for mora-level prosody prediction in Japanese TTS.

Despite its focus on Japanese, this approach has significant poten-
tial for broader applications. The method of predicting mora-level
log fo without explicit accentual labels could be readily adapted
to phoneme-level prediction for other languages. This adaptability
suggests that our framework for prosody prediction is not inherently
limited to Japanese, but can be tailored to various linguistic contexts.

Furthermore, the methodology could be extended beyond fo to
predict other crucial speech parameters such as energy and duration.
This indicates potential applicability to a wide range of prosodic
features across different language families, not limited to pitch-accent
languages like Japanese. By predicting these additional parameters,
the method could potentially enhance the naturalness and expressive-
ness of synthesized speech in diverse languages and TTS applications.

V. CONCLUSION

This paper proposes a data-driven prosody prediction method for
Japanese TTS using Japanese BERT without the use of accentual
labels during training. A Japanese TTS acoustic model with katakana
sequence input is first trained and mora-level log fo, which directly
corresponds to the prosody, is extracted using forced alignment.
Then, a pre-trained Japanese BERT is finetuned on word sequences
including kanji and the corresponding katakana sequence input for
the task of predicting the mora-level log fo extracted using forced
alignment. During inference, the mora-level log fo predicted by
the finetuned Japanese BERT is used in the TTS acoustic model
with katakana input, and correct prosodic synthesis can be realized
thanks to the word sequence with kanji input. Experimental results
demonstrated that the proposed method can realize the same synthesis
quality and higher accent correctness compared with conventional
neural TTS models that require accentual labels.

ACKNOWLEDGMENT

We would like to thank Professor Katsuhito Sudoh of Nara
Women’s University, Japan, for his helpful comments on this work.



REFERENCES

[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgian-
nakis, and Y. Wu, “Natural TTS synthesis by conditioning WaveNet on
mel spectrogram predictions,” in Proc. ICASSP, Apr. 2018, pp. 4779–
4783.

[2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“FastSpeech 2: Fast and high-quality end-to-end text to speech,” in Proc.
ICLR, May 2021.

[3] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder with
adversarial learning for end-to-end text-to-speech,” in Proc. ICML, July
2021, pp. 5530–5540.

[4] D. Lim, S. Jung, and E. Kim, “JETS: Jointly training FastSpeech2 and
HiFi-GAN for end to end text to speech,” in Proc. Interspeech, Sept.
2022, pp. 21–25.

[5] T. Okamoto, Y. Ohtani, T. Toda, and H. Kawai, “ConvNeXt-TTS and
ConvNeXt-VC: ConvNeXt-based fast end-to-end sequence-to-sequence
text-to-speech and voice conversion,” in Proc. ICASSP, Apr. 2024, pp.
12 456–12 460.

[6] K. Shen, Z. Ju, X. Tan, E. Liu, Y. Leng, L. He, T. Qin, S. Zhao, and
J. Bian, “NaturalSpeech 2: Latent diffusion models are natural and zero-
shot speech and singing synthesizers,” in Proc. ICLR, May 2024.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. NIPS,
Dec. 2017, pp. 5998–6008.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL-HLT, June 2019, pp. 4171–4186.

[9] T. Hayashi, S. Watanabe, T. Toda, K. Takeda, S. Toshniwal, and
K. Livescu, “Pre-trained text embeddings for enhanced text-to-speech
synthesis,” in Proc. Interspeech, Sept. 2019, pp. 4430–4434.

[10] Y. Xiao, L. He, H. Ming, and F. K. Soong, “Improving prosody with
linguistic and BERT derived features in multi-speaker based Mandarin
Chinese neural TTS,” in Proc. ICASSP, May 2020, pp. 6704–6708.

[11] T. Kenter, M. K. Sharma, and R. Clark, “Improving prosody of RNN-
based English text-to-speech synthesis by incorporating a BERT model,”
in Proc. Interspeech, Oct. 2020, pp. 2958–1796.

[12] G. Xu, W. Song, Z. Zhang, C. Zhang, X. He, and B. Zhou, “Improving
prosody modelling with cross-utterance BERT embeddings for end-to-
end speech synthesis,” in Proc. ICASSP, June 2021, pp. 2958–1796.

[13] Y. Jia, H. Zen, J. Shen, Y. Zhang, and Y. Wu, “PnG BERT: Augmented
BERT on phonemes and graphemes for neural TTS,” in Proc. Inter-
speech, Aug. 2021, pp. 151–155.

[14] R. Liu, Y. Hu, H. Zuo, Z. Luo, L. Wang, and G. Gao, “Text-to-speech for
low-resource agglutinative language with morphology-aware language
model pre-training,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 32, pp. 1075–1087, 2024.

[15] Y. Yasuda, X. Wang, S. Takaki, and J. Yamagishi, “Investigation of
enhanced Tacotron text-to-speech synthesis systems with self-attention
for pitch accent language,” in Proc. ICASSP, May 2019, pp. 6905–6909.

[16] K. Kurihara, N. Seiyama, and T. Kumano, “Prosodic features control by
symbols as input of sequence-to-sequence acoustic modeling for neural
TTS,” IEICE trans. Inf. Syst., vol. E104-D, no. 2, pp. 302–311, Feb.
2021.

[17] H. Kubozono, “Japanese dialects and general linguistics,” J. Linguist.
Soc. Jpn., vol. 148, pp. 1–31, 2015.

[18] H. Tachibana and Y. Katayama, “Accent estimation of Japanese words
from their surfaces and romanizations for building large vocabulary
accent dictionaries,” in Proc. ICASSP, May 2020, pp. 8059–8063.

[19] N. Kakegawa, S. Hara, M. Abe, and Y. Ijima, “Phonetic and prosodic
information estimation from texts for genuine Japanese end-to-end text-
to-speech,” in Proc. Interspeech, Aug. 2021, pp. 3606–3610.

[20] K. Kurihara and M. Sano, “Low-resourced phonetic and prosodic feature
estimation with self-supervised-learning-based acoustic modeling,” in
Proc. ICASSPW, Apr. 2024, pp. 640–644.

[21] ——, “Enhancing Japanese text-to-speech accuracy with a novel combi-
nation Transformer-BERT-based G2P: Integrating pronunciation dictio-
naries and accent sandhi,” in Proc. Interspeech, Sept. 2024, pp. 2790–
2794.

[22] Y. Yasuda and T. Toda, “Investigation of Japanese PnG BERT language
model in text-to-speech synthesis for pitch accent language,” IEEE J.
Sel. Top. Signal Process., vol. 16, no. 6, pp. 1319–1328, Oct. 2022.

[23] S. Ueno, M. Mimura, S. Sakai, and T. Kawahara, “Multi-speaker
sequence-to-sequence speech synthesis for data augmentation in
acoustic-to-word speech recognition,” in Proc. ICASSP, May 2019, pp.
6161–6165.

[24] J. Huang and K. C.-C. Chang, “Towards reasoning in large language
models: A survey,” in Proc. ACL, July 2023, pp. 1049–1065.

[25] S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan, F. Huang,
and H. Chen, “Reasoning with language model prompting: A survey,”
in Proc. ACL, July 2023, p. 5368–5393.

[26] Y. Yao, P. Wang, B. Tian, S. Cheng, Z. Li, S. Deng, H. Chen, and
N. Zhang, “Editing large language models: Problems, methods, and
opportunities,” in Proc. ENMLP, Dec. 2023, p. 10222–10240.

[27] I. R. Titze, R. J. Baken, K. W. Bozeman, S. Granqvist, N. Henrich, C. T.
Herbst, D. M. Howard, E. J. Hunter, D. Kaelin, R. D. Kent, J. Kreiman,
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