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ABSTRACT

Some neural vocoders with fundamental frequency (f0) control have
succeeded in performing real-time inference on a single CPU while
preserving the quality of the synthetic speech. However, compared
with legacy vocoders based on signal processing, their inference
speeds are still low. This paper proposes a neural vocoder based
on the source-filter model with trainable time-variant finite impulse
response (FIR) filters, to achieve a similar inference speed to legacy
vocoders. In the proposed model, FIRNet, multiple FIR coefficients
are predicted using the neural networks, and the speech waveform
is then generated by convolving a mixed excitation signal with these
FIR coefficients. Experimental results show that FIRNet can achieve
an inference speed similar to legacy vocoders while maintaining f0
controllability and natural speech quality.

Index Terms— Speech synthesis, neural vocoder, source-filter
model, finite impulse response, fundamental frequency control

1. INTRODUCTION

A neural vocoder is a well-known neural waveform generation
technique that allows us to convert acoustic features to high-quality
speech waveforms. Since the invention of WaveNet [1], many neural
vocoders have been proposed [2–6] and applied in speech genera-
tion systems, such as text-to-speech (TTS), voice conversion, and
singing voice synthesis. For practical use, they require fundamental
frequency (f0) controllability and real-time generation speed on a
single CPU. Therefore, it is important to develop neural vocoders
that satisfy these requirements.

HiFi-GAN [5] is a fast and high-fidelity neural vocoder. Al-
though HiFi-GAN achieves real-time inference, it does not have
flexible f0 controllability. To solve this problem, Harmonic-Net+ [7]
introduced the source-filter model [8] and the quasi-periodic (QP)
architecture [9, 10] into HiFi-GAN. In Harmonic-Net+, the down-
sampling network converts a source excitation signal generated
from the f0 to downsampled latent representations. The speech
waveform is then generated using the QP-HiFi-GAN module. An-
other approach based on HiFi-GAN, Source-filter HiFi-GAN (SiFi-
GAN) [11], has been proposed. This framework has two networks:
the source network, which applies the QP architecture, and the
filter network, which comprises the HiFi-GAN module. In SiFi-
GAN, the source network converts the f0-dependent sine signal to
the source excitation representation, from which the filter network
generates the speech waveform. Although these neural vocoders
achieve real-time generation speed on a single CPU and flexible f0
controllability, their real-time factors (RTFs) for 24-kHz sampling
waveforms range from approximately 0.4 to 0.8 [7, 11] because of
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the high complexity of the filtering process. In contrast, the TTS
acoustic models reported in [12] are much faster than the neural
vocoders described above on a single CPU. Therefore, for real-time
operation in speech generation systems, source-filter-based neural
vocoders require higher inference speed than those described above.

According to the theory of the source-filter model [8], a speech
waveform is generated by convolving a source excitation signal with
an impulse response of the vocal tract. That is, there is a possibil-
ity of realizing a high-speed neural vocoder based on the source-
filter model by estimating appropriate impulse responses using neu-
ral networks. To test this hypothesis, we propose a neural vocoder
with trainable time-variant finite impulse response (FIR) filters. In
the proposed model, which we call FIRNet, neural networks convert
f0-independent acoustic features to multiple FIR coefficients. The
speech waveform is then generated through the intermediate resid-
ual signal by filtering the source excitation signal with these FIR
coefficients. Because the FIR filters do not depend on f0 param-
eters, flexible f0 control is possible by changing source excitation
signals. In addition, this model achieves very high inference speed
because of the low computational cost incurred by simple linear fil-
tering. Experimental results show that the inference speed of the
proposed model on a single CPU is almost the same as that of legacy
vocoders, such as the WORLD synthesizer [13], while the speech
quality and f0 controllability are preserved 1.

2. RELATED WORK

Several neural vocoders based on the source-filter model have been
proposed previously. In [7, 11, 14, 15], speech waveforms are gener-
ated by filtering excitation signals nonlinearly with neural networks.
LPCNet [4, 16] predicts residual signals using neural networks and
then generates speech waveforms using linear prediction with linear
predictive coding parameters, that is, infinite impulse response (IIR)
filtering. The NITECH end-to-end TTS system [17] introduced the
source-filter model using FIR filtering into the waveform generation
module. In this module, speech waveforms are generated from pre-
dicted residual signals by the differentiable mel-cepstral synthetic
filter [18]. This synthetic filter employs the cascade connection of
multiple FIR filters instead of the IIR filter because of the need to
satisfy bounded-input bounded-output (BIBO) stability.

In contrast to the above neural vocoders, FIRNet generates
speech only by conversion from source excitation signals to residual
signals and speech waveforms, in a step-by-step manner, by linear
filtering with multiple FIR filters whose coefficients are predicted
by neural networks. In addition, FIRNet guarantees stable speech
generation because of its BIBO stability.

1Speech samples are available on https://ast-astrec.nict.
go.jp/demo_samples/firnet_icassp2024/
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Fig. 1. Overview of FIRNet and sub-modules.

3. PROPOSED METHOD: FIRNET

Fig. 1 shows an overview of FIRNet and its sub-modules. FIRNet
(Fig. 1(a)) is composed of the excitation generator, three causal
convolution blocks (Fig. 1(b)), and the residual FIR network and
resonance FIR network (Fig. 1(c)). As input features, we employ
continuous f0, voiced/unvoiced flag (V/UV), band aperiodicity
(BAP) [19], and mel-generalized cepstrum coefficients (MGC) [20].

In inference, the excitation generator first generates a mixed ex-
citation signal [21] shown in Fig. 2(a), using continuous f0, V/UV,
and BAP. BAP and MGC are converted to their latent representa-
tions by causal convolution blocks. Moreover, latent representations
for the residual FIR network are generated from the BAP and MGC
latent representations. Because the frequency characteristics of the
mixed excitation signal differ from those of the actual residual sig-
nal, the residual FIR network conditioned by its corresponding latent
representations converts the mixed excitation signal to the residual
signal, as illustrated in Fig. 2(b). Finally, the residual signal is con-
verted to a speech waveform by the resonance FIR network condi-
tioned by the MGC latent representation, as shown in Fig. 2(c).

3.1. Details of generator modules

3.1.1. Excitation generator

The excitation generator generates a mixed excitation signal [13,21],
which consists of a weighted sum of the f0-dependent pulse train and
the Gaussian noise based on BAP. The tth mixed excitation signal
s(t) is defined as follows:

s (t) =

{
gpv

(k) ∗ p (t) + gnu
(k) ∗ n (t) if voiced

gnn (t) if unvoiced
, (1)

where p(t), n(t), gp, and gn denote the f0-dependent pulse train,
Gaussian noise at time t, gain values for p(t), and gain values for
n(t), respectively. v(k) and u(k) denote impulse responses of voiced
and unvoiced segments, respectively. These are calculated by ap-
plying the inverse Fourier transform to BAP at the kth frame corre-
sponding to t. ∗ denotes the convolution operation. Following [14],
gp and gn are set to 0.1 and 0.003, respectively.
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(c) Speech waveform
Fig. 2. Generated signals from FIRNet.

3.1.2. Causal convolution block

Fig. 1(b) illustrates the structure of our causal convolution block.
To obtain highly accurate and effective latent representations, we
employ the core module of the ConvNeXt V2 architecture [22].
This consists of an input depthwise convolution layer, layer normal-
ization [23], pointwise convolution with Gaussian error linear unit
(GELU) activation [24], global response normalization [22], and
output pointwise convolution. In this paper, we apply causality to
the input depthwise convolution layer and set its kernel size to 5.
The causal convolution blocks include two ConvNeXt core blocks.
The numbers of output channels for BAP, MGC, and the residual
FIR network are 128, 256, and 128, respectively.

3.1.3. FIR network

Fig. 1(c) illustrates the structure of the FIR network architecture. In
this network, an input signal is converted to an output signal using
multiple FIR filters. In the figure, h(1,k), h(2,k), · · · , h(M,k) rep-
resent the impulse response coefficients of the corresponding FIR



filters, x(0)(t) and x(M)(t) are the input and output signals, respec-
tively, and x(1)(t), x(2)(t), · · · , x(M−1)(t) represent the intermedi-
ate output signals, which are defined as follows:

x(m) (t) = h(m,k) ∗ x(m−1) (t) + x(m−1) (t) . (2)

The impulse response coefficients of the mth FIR filter are estimated
from the latent representations of an auxiliary feature and previous
impulse response coefficients using the dilated causal convolution
layer. In this paper, the number of latent channels is set to 128, the
kernel sizes of the dilated causal convolution layers are set to 3, and
the others are set to 1. The residual and resonance FIR networks
include 8 FIR filters with tap sizes of 256. The dilation sizes of the
8 dilated causal convolution layers are 1, 2, 4, 8, 1, 2, 4, and 8.

3.2. Training criteria

FIRNet is a generative adversarial network (GAN) [25]. In this pa-
per, we employ four losses as the objective for the generator: an ad-
versarial loss with least squares criteria Ladv [26], a feature match-
ing loss Lfm [27], a mel-spectral L1 loss Lmel for speech wave-
forms, and a source excitation regularization loss Lreg [11] for resid-
ual signals. The objective function LG is defined as follows:

LG = Ladv + λfmLfm + λmelLmel + λregLreg, (3)

where λfm, λmel, and λreg denote the balancing hyperparameters
for Lfm, Lmel, and Lreg , respectively. We empirically set λfm,
λmel, and λreg to 2.0, 50.0, and 20.0, respectively. In addition, we
employed HiFi-GAN’s discriminator [5] according to the results of
preliminary experiments.

4. EXPERIMENTAL EVALUATION

4.1. Experimental setup

In experiments, we objectively and subjectively evaluated the per-
formance of FIRNet in the analysis–synthesis scenario. We used a
Japanese male speaker from the Hi-Fi-CAPTAIN corpus [28].We
randomly selected 1,000 utterances from the parallel and non-
parallel training subsets to use as training data. We used 100 valida-
tion and 100 evaluation utterances from their corresponding subsets.
We downgraded all recording data from 48 kHz and 24 bits to 24
kHz and 16 bits and normalized them to −17 dB. In feature extrac-
tion, we set the frame shift to 5.0 ms and the FFT size to 1024. In
f0 extraction, we calculated f0 contours by using DIO [13], HAR-
VEST [29], SWIPE [30], RAPT [31], and REAPER2. From these
contours, we then extracted the median of f0 and the majority vote
of V/UV in each frame. Spectra were calculated by CheapTrick [32]
and converted to 40-dimensional MGCs whose warping coefficients
were 0.466. BAP was extracted by D4C [19] and the number of
BAP dimensions was 3.

The conventional systems that we used were the WORLD syn-
thesizer [13] and SiFi-GAN [11]. All neural vocoders used in the
experiments were constructed using the Adam optimizer [33]. The
learning rate, β1, β2, and ϵ were set to 0.0002, 0.5, 0.8, and 1.0 ×
10−8, respectively. These optimizer settings were made for both
the generator and discriminator. The number of update iterations
was 500,000, and the learning rate was halved every 100,000 itera-
tions. While the minibatch size of SiFi-GAN was the original setting
in [11], that of FIRNet set to one utterance.

2https://github.com/google/REAPER
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Fig. 3. Impulse responses of FIR filters at the vowel /a/ and the cor-
responding input and output signals. The left and right parts of the
figure show the input and output signals, respectively. The central
parts of the figure show (from top to bottom) the FIR coefficients,
amplitude, and group delay characteristics.

4.2. Effectiveness of FIR filters

Fig. 3 shows the impulse responses of various FIR filters and their
corresponding input and output signals. In the impulse responses of
the residual FIR network, the first FIR filter in Fig. 3(a) dramatically
changes the waveform shape of the source excitation signal. The
remaining FIR filters, after the first, only slightly modify the wave-
form shapes of the input signals. This suggests that we may be able
to reduce the number of FIR filters in the residual FIR network.



Table 1. Results of objective evaluation and numbers of model pa-
rameters. The best score in each f0 condition is highlighted in bold.

Model MCD [dB] RMSE VUVE [%] RTF
1.0× f0

WORLD 6.87 0.029 4.47 0.106
SiFiGAN 5.85 0.037 4.16 0.576

FIRNet (proposed) 4.41 0.030 3.65 0.103
0.00× f0

WORLD 7.46 - - 0.115
SiFiGAN 7.90 - - 0.591

FIRNet (proposed) 6.23 - - 0.103
0.25× f0

WORLD 11.21 0.073 20.61 0.100
SiFiGAN 8.06 0.096 21.14 0.566

FIRNet (proposed) 6.64 0.095 22.31 0.104
0.5× f0

WORLD 8.39 0.038 5.03 0.102
SiFiGAN 6.74 0.056 6.59 0.569

FIRNet (proposed) 6.04 0.192 16.42 0.103
2.0× f0

WORLD 7.19 0.026 5.15 0.12
SiFiGAN 6.70 0.097 8.18 0.574

FIRNet (proposed) 5.09 0.068 6.13 0.103
4.0× f0

WORLD 8.82 0.065 10.53 0.138
SiFiGAN 8.22 0.258 42.22 0.572

FIRNet (proposed) 6.99 0.179 25.62 0.104
8.0× f0

WORLD 10.30 - - 0.180
SiFiGAN 9.20 - - 0.574

FIRNet (proposed) 8.57 - - 0.101
Number of model parameters [M]

SiFi-GAN 11.29
FIRNet (proposed) 9.21

In contrast, in the resonance FIR network, the filtered wave-
form shapes gradually change by convolving with successive FIR
filters. In addition, the impulse responses in the resonance FIR net-
work have shapes that differ from those in the residual FIR network.
This implies that we need to make the impulse responses as long as
possible by using many FIR filters or a FIR filter with a long tap size
to obtain fine spectral envelopes.

4.3. Objective evaluation

We compared FIRNet with conventional methods in aspects of
mel-cepstral distortion (MCD), root mean squared error of log f0
(RMSE), V/UV decision error (VUVE), and RTF on a single CPU
(AMD EPYC 7542). We used seven f0 scaling conditions: 1.0, 0.0,
0.25, 0.5, 2.0, 4.0, and 8.0.

Table 1 shows the objective results. f0 and V/UV could not
be calculated in the f0 scaling conditions of 0.0 and 8.0. The pro-
posed method achieved the lowest MCD of all three methods in all
f0 conditions. With respect to generation speed, FIRNet was five
times faster than SiFi-GAN because FIRNet does not require com-
plex processing of time-domain signals due to the classical FIR fil-
terings. Moreover, FIRNet has a higher generation speed than the
WORLD synthesizer in the cases of large f0 scaling conditions be-
cause the waveform generation algorithm in WORLD depends on
pitch intervals.
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Fig. 4. Subjective results. Error bars show 95% confidence intervals.

4.4. Subjective evaluation

We conducted five-level mean opinion score (MOS) tests to evaluate
the naturalness of the synthetic speech. Using the f0 scaling condi-
tions in Section 4.3, we compared WORLD, SiFi-GAN, FIRNet, and
the original waveforms. We employed 20 listeners, who each evalu-
ated 12 samples for each method and each f0 scaling condition.

Fig. 4 shows the subjective results. For SiFi-GAN, although the
synthetic speech with f0 scaling conditions of 1.0, 0.5, and 2.0 had
high quality, synthetic speech with other conditions was degraded
dramatically. In contrast, FIRNet keeps a similar speech quality to
WORLD in the f0 scaling conditions of 0.0, 0.25, 4.0, and 8.0. In
addition, FIRNet had higher speech quality than WORLD in the f0
scale condition of 1.0. Therefore, FIRNet could achieve both good
robustness for f0 control and speech quality of the neural vocoder.

SiFi-GAN achieved higher speech quality than FIRNet in the
case of the f0 scaling conditions of 1.0. Moreover, the speech qual-
ity of FIRNet with a f0 scaling condition of 0.5 was worse than that
generated by any other method. By checking some samples of gen-
erated speech, we found that some FIR coefficients include slight
harmonic structures. We conclude that these structures caused this
degradation of speech quality in FIRNet. Therefore, we need to im-
prove the speech quality further in future work.

5. CONCLUSION

This paper proposed a neural waveform generation model, FIRNet,
which achieves fast waveform generation and f0 controllability. Be-
cause the inference speed of FIRNet is comparable to that of the
WORLD synthesizer on a single CPU, we believe that FIRNet can
be applied in speech generation systems such as TTS, singing voice
synthesis, and voice conversion without a bottleneck caused by pro-
cessing speed. In the future, to improve speech quality, we will intro-
duce multiple collaborative discriminators [34] and more effective
structures into FIRNet. In addition, we will apply FIRNet to full-
band neural waveform generation and in various end-to-end speech
generation systems.
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