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ABSTRACT

Although diffusion probabilistic vocoders WaveGrad and DiffWave
can realize real-time high-fidelity speech synthesis with a simple loss
function in training, all noise components with over the full range of
noise levels are predicted by one model in all iterations. This pa-
per proposes a simple but effective noise level-limited sub-modeling
framework for diffusion probabilistic vocoders Sub-WaveGrad and
Sub-DiffWave. In the proposed method, DiffWave conditioned on
a continuous noise level like WaveGrad, and spectral enhancement
post-filtering are also provided. The proposed Sub-WaveGrad and
Sub-DiffWave models are realized using 10 sub-models. These mod-
els are separately trained with different noise level limits, and only
necessary sub-models are used according to the noise schedule dur-
ing inference. The results of experiments using a Japanese female
speech corpus indicate that both the proposed Sub-WaveGrad and
Sub-DiffWave outperform vanilla WaveGrad and DiffWave in terms
of the model accuracy and synthesis quality while retaining the in-
ference speed.

Index Terms— Speech synthesis, diffusion probabilistic vocoder,
WaveGrad, DiffWave, sub-modeling

1. INTRODUCTION

Given the success of WaveNet [1], neural network-based waveform
generative models are investigated in speech synthesis. Moreover,
Tacotron 2 [2] can realize end-to-end neural text-to-speech (TTS)
for English with the same quality as human natural speech when
combined with the WaveNet vocoder [3], which synthesizes speech
waveforms from input acoustic features. Although the inference of
a WaveNet vocoder is slow because of its autoregressive structure,
many types of real-time neural vocoders based on both autoregres-
sive and non-autoregressive structures have been investigated.

In contrast to real-time autoregressive neural vocoders such as
WaveRNN [4], LPCNet [5], and FeatherWave [6], non-autoregressive
models, which simultaneously synthesize all speech waveform sam-
ples, can be easily implemented as real-time neural vocoders, and
many models have been investigated. Non-autoregressive neural
vocoders are broadly categorized into two types. The first type con-
sists of flow-based approaches [7] such as Parallel WaveNet [8, 9],
WaveGlow [10], FloWaveNet [11], WaveVAE [12], Waveflow [13],
and WG-WaveNet [14]. The other type comprises generative ad-
versarial network (GAN)-based models [15] such as MelGAN [16],
Parallel WaveGAN (PWG) [17], GAN-TTS [18, 19], VocGAN [20],
HiFi-GAN [21], and Multi-band MelGAN [22]. Additionally,
a signal-processing-based method, the neural source-filter [23],
has been presented. However, GAN-based models must train
discriminators not used in the inference, and synthesis quality
highly depends on their accuracy. Additionally, most such meth-
ods [8, 9, 12, 14, 16–18, 20, 21, 23] introduce multiple loss functions

with weighting parameters, complicating training. Although other
flow-based methods [10,11,13] can be trained with simple loss func-
tions in the time domain, the network structures must be bijections.

As promising approaches to non-autoregressive neural vocoders,
WaveGrad [24] and DiffWave [25] were recently proposed based
on denoising score matching [26] and diffusion probabilistic mod-
els [27]. In these models, the added noise components are predicted
from mixtures of speech waveforms and Gaussian white noise with
weighting factors (noise levels) as the diffusion process in training.
In inference, input Gaussian white noise is iteratively converted into
a speech waveform by the denoising process based on Langevin dy-
namics [28]. In contrast to conventional non-autoregressive models,
these diffusion probabilistic vocoders can be trained with a simple
loss function in the time domain without a bijective structure while
realizing high-fidelity synthesis. However, the inference speed is
slower than that of other neural vocoders, with a real-time factor
(RTF) of less than 0.1 [24, 25].

In diffusion probabilistic vocoders, all noise components over
the full range of noise levels are predicted by one model in all itera-
tions. However, the speech signal components are dominant when
noise levels are relatively low whereas the noise components are
dominant when noise levels are relatively high, and they are quite
different situations. Therefore, by training different sub-models for
different noise level ranges, the model accuracy and synthesis quality
should improve because each sub-model can concentrate on predict-
ing specific noise components within a limited range of levels.

Motivated by the above, this paper proposes a simple but effec-
tive noise level-limited sub-modeling framework for diffusion prob-
abilistic vocoders Sub-WaveGrad and Sub-DiffWave. As a part of
the proposed method, a DiffWave conditioned on continuous noise
levels like WaveGrad [24] and spectral enhancement post-filtering
for diffusion probabilistic vocoders are also proposed. In this initial
investigation, the proposed Sub-WaveGrad and Sub-DiffWave mod-
els were implemented using 10 sub-models with the vanilla model
structures. These sub-models were separately trained with different
ranges of noise levels. Only the necessary sub-models were used
according to the noise schedule during inference. Although the to-
tal model size of the proposed method increases with the number
of sub-models, the inference speed remains the same. The experi-
mental results presented in Section 4 suggest that both the proposed
Sub-WaveGrad and Sub-DiffWave models successfully improve the
model accuracy and synthesis quality compared with vanilla models
while maintaining the synthesis speed.

2. DIFFUSION PROBABILISTIC VOCODERS

In diffusion probabilistic vocoders, a gradually increasing noise
schedule β1, β2, · · · , βN , where N is the number of iterations,
plays an important role. In training, network model ǫθ conditioned
on acoustic features h is trained to predict added Gaussian white
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Fig. 1. Part of the network structure of the proposed DiffWave model
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√
1− ᾱ.

noise ǫ from the mixture of speech waveform x0 and noise ǫ with
a weighting factor ᾱn, where θ denotes the model parameters,
αn = 1 − βn and ᾱn =

∏n
s=1 αs. To distinguish each noise level

at each iteration, the network is also conditioned on
√
ᾱn and n

in WaveGrad and DiffWave, respectively. Additionally, to adopt
continuous noise levels, a continuous noise level of

√
ᾱ uniformly

sampled between
√
ᾱn and

√
ᾱn−1 is also conditioned on the model

in WaveGrad [24]. Therefore, the loss function is simply defined in
the time domain as follows:1
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where c =
√
ᾱ in WaveGrad and c = n in DiffWave, respectively.

In the inference, input Gaussian white noise xN ∼ N (0, I) is iter-
atively converted into a speech waveform by the denoising process
based on Langevin dynamics [28] with n = N → 1 as follows:

xn−1 =
1√
αn

(
xn − 1− αn√

1− ᾱn

ǫθ (xn, h, c)

)
+ σnz, (2)

where σn =
√

βn(1− ᾱn−1)/(1− ᾱn), z ∼ N (0, I) for n > 1,
and z = 0 for n = 1. Although WaveGrad and DiffWave intro-
duce the same training and synthesis strategies as Eqs. (1) and (2),
the network structures differ. WaveGrad is constructed from multi-
ple upsampling and downsampling blocks used in GAN-TTS [18],
whereas DiffWave introduces WaveNet-based non-causal dilated
convolution layers widely used in other non-autoregressive models.

In WaveGrad and DiffWave, only one model is used for all it-
erations and is trained to predict all noise components over the full
range of noise levels by Eq. (1). However, the noise prediction ac-
curacy and synthesis quality of these models should improve if the
noise levels are limited, as described in Section 1.

3. PROPOSED NOISE LEVEL-LIMITED SUB-MODELING

3.1. DiffWave conditioned on continuous noise levels

Before noise level-limited sub-modeling can be proposed, DiffWave
must be modified to be conditioned on continuous noise levels, like
WaveGrad [24]. The adoption of continuous noise levels is impor-
tant because it enables an arbitrary noise schedule to be used during
inference. As a result, the synthesis quality can be improved, and

1Although L1 loss is introduced in WaveGrad for better stability [24],
this paper introduces the mean square error (MSE) loss for WaveGrad as Dif-
fWave because WaveGrad with the MSE loss can also be successfully trained
with gradient clipping. Moreover, WaveGrad can be directly compared with
DiffWave using the same loss function.

1000 (Linear(1× 10−6, 0.01, 1000)) for training [24]

25 (Fibonacci) [24]∗
✂ 6 (Manual) for proposed Sub-DiffWave

1000 (Linear(1× 10−4, 0.005, 1000)) [24]

50 (Linear(1× 10−4, 0.05, 50)) [24, 25]

Fig. 2. Relationship between different noise schedules and the 10
proposed sub-models.

fast and high-fidelity synthesis within a few iterations can be real-
ized by an optimal noise schedule [24]. As described in Section 3.2,
the proposed approach divides

√
1− ᾱn into 10 equal parts for 10

sub-models instead of
√
ᾱn. Therefore, the noise level is defined in

this study as
√
1− ᾱ, and DiffWave is conditioned on c =

√
1− ᾱ,

although
√
ᾱ is defined as the noise level in [24]. A part of the net-

work structure of the proposed DiffWave conditioned on a contin-
uous noise level

√
1− ᾱ is depicted in Fig. 1, where the positional

encoding used in WaveGrad is also introduced and connected to each
dilated convolution layer; the remaining structure is the same as that
of vanilla DiffWave. As Table 1 shows, the number of parameters
of the proposed DiffWave is about 54 % of that of vanilla DiffWave
conditioned on n because of the simpler structure.

3.2. Noise level-limited sub-modeling

Here, a noise level-limited sub-modeling framework for WaveGrad
and DiffWave is proposed to obtain the vocoders Sub-WaveGrad and
Sub-DiffWave. First, β1 to β1000 are scheduled using Linear(1 ×
10−6, 0.01, 1000), as in [24], and

√
1− ᾱn is divided into 10 equal

parts for the 10 sub-models, as shown in Fig. 2.2 Next, each sub-
model is trained conditioned on each continuous limited noise level.
As described in Section 3.1, Sub-WaveGrad and Sub-DiffWave are
also conditioned on c =

√
1− ᾱ instead of

√
ᾱ. In inference, a

noise schedule is set and only the necessary sub-models are used.
Using the proposed sub-modeling, each sub-model is able to pre-
dict specific noise components within a limited range of noise levels.
This should improve the noise prediction accuracy and speech wave-
form synthesis quality without reducing inference speed, although
the total model size accordingly increases.

2Initially,
√
ᾱn was divided into 10 equal parts for 10 sub-models ac-

cording to [24]. However, it was not effective because
√
ᾱn changes little

when n is relatively small compared with
√
1− ᾱn, and most iterations are

assigned to sub-model 1 during inference when N is relatively small.



(a) Frequency response of post-filter (b) Original

(c) Synthesized by sub-DiffWave (d) Post-filtered

Fig. 3. (a) Frequency response of proposed spectral enhancement
post-filter; (b)– (d) spectrograms of a waveform in the test set for the
proposed Sub-DiffWave with six iterations.

3.3. Spectral enhancement post-filtering

As described in [24], the high-frequency detail of synthesized speech
cannot be reconstructed with a noise schedule that includes super-
fluous noise, especially when the number of iterations is relatively
small. To recover the degraded high frequency component, a time-
invariant spectral enhancement post-filtering is introduced. The
post-filter is calculated from the averaged amplitude spectrum dif-
ference between original and synthesized waveforms using a devel-
opment set. The amplitude spectra are obtained using a short-time
Fourier transform (STFT) with a Hann window, and the post-filter is
implemented as a simple FIR filter using the inverse STFT of the av-
eraged amplitude spectrum difference. For example, the frequency
response of the proposed post-filter as well as the spectrograms for
the proposed DiffWave with six iterations are plotted in Fig. 3. In
preliminary experiments, the proposed spectral enhancement post-
filtering is shown to substantially improve the synthesis quality of
the diffusion probabilistic vocoders.

4. EXPERIMENTS

4.1. Experimental conditions

To evaluate the proposed sub-modeling, objective and subjective ex-
periments were conducted using a Japanese female speech corpus
(neutral data) with a sampling frequency of 24 kHz. A total of
25,046 (18 h) and 20 utterances were respectively used for the train-
ing and test sets, as in [29, 30]. Additionally, 40 and 10 utterances
were introduced as the development set for calculating the proposed
spectral enhancement post-filters and exploring the noise schedules
of six iterations, as in [24]. Sub-WaveGrad and Sub-DiffWave were
compared with vanilla WaveGrad and DiffWave as well as the con-
ventional WaveGlow [10] and PWG [17] non-autoregressive neural
vocoders under both analysis–synthesis and TTS conditions.

Mel-spectrograms were used as input acoustic features. To
adjust the conventional models [10, 17], 80-dimensional log-mel-
spectrograms were analyzed every 12.5 ms over a Hann window with
a length of 85.3 ms and a frequency band of 125–7,600 Hz, as used
in [10, 17, 29, 30]. In WaveGlow, all the model parameters were the
same as those used in [10, 29, 30]. PWG was trained under the same

Table 1. Number of model parameters (#param), real-time factor
(RTF) of the inference of the non-autoregressive neural vocoders
used in the experiments, total averaged loss (TAL) of the test set
scores for the diffusion probabilistic vocoders for n = N to 1, and
first 20 % average loss (AL 20 %) of the test set scores for n = N to
0.8N + 1, as calculated in Eq. (1). PWG: Parallel WaveGAN, (d):
discrete noise condition. “-n” indicates the number of iterations.

Model #param RTF TAL AL 20 %
WaveGlow [10] 263M 0.16 - -
PWG [17] 1.35M 0.015 - -
WaveGrad-1000 [24] 15.8M 8.50 0.0028 0.0003
Sub-WaveGrad-1000 158M 8.50 0.0022 0.0003
WaveGrad(d)-50 [24] 15.8M 0.40 0.0058 0.0007
WaveGrad-50 [24] 15.8M 0.42 0.0063 0.0007
Sub-WaveGrad-50 142M 0.42 0.0050 0.0006
WaveGrad-25 [24] 15.8M 0.21 0.13 0.0023
Sub-WaveGrad-25 94.8M 0.21 0.11 0.0018
WaveGrad-6 [24] 15.8M 0.05 - -
Sub-WaveGrad-6 47.4M 0.05 - -
DiffWave-1000 1.43M 14.6 0.0025 0.0003
Sub-DiffWave-1000 14.3M 14.6 0.0021 0.0002
DiffWave(d)-50 [25] 2.62M 0.74 0.0055 0.0005
DiffWave-50 1.43M 0.73 0.0059 0.0006
Sub-DiffWave-50 12.9M 0.73 0.0051 0.0004
DiffWave-25 1.43M 0.36 0.13 0.0020
Sub-DIffWave-25 8.58M 0.36 0.12 0.0015
DiffWave-6 1.43M 0.09 - -
Sub-DiffWave-6 4.29M 0.09 - -

conditions in [17]. In the diffusion probabilistic vocoders, in addi-
tion to models conditioned on continuous noise levels, WaveGrad
and DiffWave conditioned on discrete noise levels of 50 iterations
with Linear(1 × 10−4, 0.05, 50), commonly investigated in both
vanilla WaveGrad and DiffWave, were trained for direct compar-
ison. The WaveGrad-based models and DiffWave-based models
were the same network structures as those of WaveGrad base [24]
and DiffWave with 64 residual channels [25]. The batch size, batch
length, and number of parameter update iterations for the diffusion
probabilistic vocoders were 16, 15,900, and 1M, respectively, as
for vanilla DiffWave [25]. The learning rate of Sub-WaveGrad was
0.0001 and that for the other diffusion probabilistic vocoders was
0.0002. In WaveGrad and Sub-WaveGrad, gradient clipping was
introduced with a weight of 1.0.

In the inference, 1000, 50, 25, and 6 iterations were evalu-
ated (Fig. 2). As in [24], six-iteration inference schedules were
also explored by sweeping βs over {1, 2, 3, 4, 5, 6, 7, 8, 9} ×
10−6, 10−5, 10−4, 10−3, 10−2, 10−1 using the same criterion
as [24]. The results in Fig. 2 show that the numbers of sub-models
for 1000, 50, 25, and 6 iterations were 10, 9, 6, and 3, respectively.
The proposed spectral enhancement post-filtering was applied to
all the diffusion probabilistic vocoders, where the FIR filter length,
analysis window length, and shift for STFT were 512, 512, and 256
samples, respectively.

In the TTS condition, a Tacotron-based stable acoustic model
with phoneme alignment, BLSTM+Taco2Dec [29, 30], was intro-
duced with hidden Markov model-based forced alignment [31].
The feedforward Transformer-based duration predictor used in [32]
was modified for full-context label input and introduced. Although
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Fig. 4. Results of the MOS test with 15 listening subjects. The confidence level of the error bars is 95 %. PWG: Parallel WaveGAN, (d):
discrete noise condition for WaveGrad and DiffWave. “Sub-” indicates Sub-WaveGrad and Sub-DiffWave.

the number of dimensions of the linguistic feature vectors was 130
in [29,30], it was reduced to 48 in the experiments without degrading
the synthesis quality.

All the training steps and inferences were implemented using
PyTorch. A RAdam optimizer [33] was introduced in all neural net-
work models except WaveGlow. All the models were trained using
four NVIDIA Tesla V100 GPUs. The training durations of the mod-
els based on WaveGlow, PWG, WaveGrad (each sub-model), and
DiffWave (each sub-model) were about 20 days, 1 day, 1 day, and
2 days, respectively. Those of the WaveGrad- and DiffWave-based
models using a single NVIDIA Tesla V100 GPU were about 3 days
and 4 days, respectively.

As an objective evaluation, the total averaged test set loss scores
of diffusion probabilistic vocoders were calculated by Eq. (1), as
in training, with n = N to 1. Additionally, to evaluate the model
accuracy during the early iterations, the averaged test set loss scores
for the first 20 % of the iterations were also measured with n =
N to 0.8N + 1 for fixed numbers of iterations of 1000, 50, and
25. Furthermore, the RTFs of all models were measured using an
NVIDIA Tesla V100 GPU.

To subjectively evaluate the speech waveforms synthesized by
these non-autoregressive neural vocoders under analysis–synthesis
and TTS conditions, mean opinion score (MOS) tests with a five-
point scale [34] were conducted. These were presented through
headphones to 15 Japanese adult native speakers without hearing
loss (20 utterances × 18 conditions, as shown in Fig. 4, including
the original test set waveforms = 360 utterances).

4.2. Results and discussion

The results of the RTFs, numbers of model parameters, total aver-
aged test set loss scores and averaged test set loss scores for the first
20 % iterations are shown in Table 1. The RTFs of the acoustic
model and duration predictor were 0.015 and 0.0007, respectively.
The results of the MOS tests are plotted in Fig. 4.

The results of the averaged test set loss scores show that the
proposed sub-modeling improves the model accuracy in both Sub-
WaveGrad and Sub-DiffWave. Furthermore, the results of the MOS
tests indicate that the synthesis qualities of Sub-WaveGrad and Sub-
DiffWave are substantially better than those of the vanilla models.
In particular, Sub-DiffWave with 25 iterations substantially outper-
formed WaveGlow under the analysis–synthesis condition and was
equivalent to WaveGlow under the TTS condition. Although the
number of model parameters of WaveGlow is huge and 20 days are

required for training using four GPUs, the proposed Sub-DiffWave
with 25 iterations can be realized using six sub-models with fewer
model parameters and trained for four days with six GPUs. Although
Sub-DiffWave with six iterations could not reach the performance
it did with 25 iterations, it still outperformed PWG under both the
analysis–synthesis and TTS conditions and realized real-time syn-
thesis with an RTF of 0.09.

Although the total averaged test set loss score of Sub-WaveGrad
with 25 iterations was lower than those of the others with 25 itera-
tions, the synthesis quality of Sub-WaveGrad with 25 iterations was
lower than that of Sub-DiffWave. In contrast, the averaged test set
loss scores for the first 20 % iterations of Sub-DiffWave with 25
iterations was lower than those of the others and realized higher
quality synthesis. This is because noise prediction accuracy in the
early iterations is important to avoid prediction errors in later iter-
ations. These results also suggest that the GAN-TTS-based Wave-
Grad structure is suited for later iterations and the WaveNet-based
DiffWave structure is suited for early iterations. For the same rea-
son, the synthesis quality of DiffWave conditioned on discrete noise
levels with 50 iterations was higher than that of WaveGrad. There-
fore, mixture models using Sub-WaveGrad for later iterations and
Sub-DiffWave for early iterations, as “DiffWaveGrad,” might further
improve the synthesis quality and will be explored in future work.

Consequently, the results of the objective and subjective exper-
iments demonstrated that the proposed sub-modeling for diffusion
probabilistic vocoders can substantially improve the model accuracy
and synthesis quality while retaining the synthesis speed.

The optimal division criteria of sum-models, optimization of
model structure for each sub-model, and mixture models of Sub-
WaveGrad and Sub-DiffWave as “DiffWaveGrad” should be investi-
gated to further improve the synthesis accuracy and inference speed.

5. CONCLUSIONS

This paper proposed noise level-limited sub-modeling for diffusion
probabilistic vocoders. DiffWave conditioned on continuous noise
levels and spectral enhancement post-filtering were also presented.
The proposed Sub-WaveGrad and Sub-DiffWave were implemented
using 10 sub-models and were separately trained with different lim-
ited noise levels. Only the necessary sub-models are then used ac-
cording to the noise schedule in inference. The results of the experi-
ments demonstrated that both the proposed Sub-WaveGrad and Sub-
DiffWave models outperformed vanilla models in terms of model
accuracy and synthesis quality without reducing synthesis speed.
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