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ABSTRACT

This paper presents a high-intelligibility speech synthesis
method for persons with dysarthria caused by athetoid cerebral
palsy. The muscular control of such speakers is unstable because
of their athetoid symptoms, and their pronunciation is unclear,
which makes it difficult for them to communicate. In this paper,
we present a method for generating highly intelligible speech that
preserves the individuality of dysarthric speakers by combining
Transformer-TTS, CycleVAE-VC, and a LPCNet vocoder. Rather
than repairing prosody from the dysarthric speech, this method trans-
fers the dysarthric speaker’s individuality to the speech of a healthy
person generated by TTS synthesis. This task is both important
and challenging. From the results of our evaluation experiments,
we confirmed that the proposed method can partially transfer the
individuality of the target dysarthric speaker while maintaining the
intelligibility of the source speech.

Index Terms— dysarthria, speech synthesis, text-to-speech,
voice conversion, neural vocoder

1. INTRODUCTION

This paper focuses on persons with dysarthria caused by athetoid
cerebral palsy. These people are prone to frequent involuntary
muscle movements and concomitantly unstable speech movements.
Their speech tends to be unnatural and unintelligible, which is a
great hindrance to their being able to take part in social activities.
This is why there is a great need for a speech synthesis method to
aid them in their communication. To improve the intelligibility of
dysarthric speech, various methods have been proposed and they
can be divided into two categories: enhancing the intelligibility of
dysarthric speech using voice conversion techniques and building a
TTS system that can synthesize high-intelligibility speech. In this
paper, we focus on the latter approach. In this approach, it should
be noted that preserving individuality is an essential requirement
because many people with dysarthria want to communicate using
their own voice.

Text-to-speech (TTS) is one of the important technologies for
speech communication, and it has long been a subject of research.
Recently, instead of approaches based on the Hidden Markov
Model [1], various approaches based on deep neural network (DNN)
have been proposed. Along with the development of neural vocoders
which directly generate audio samples using DNN, these methods
can synthesize high-quality speech that is close to natural speech [2].

∗Work performed during an internship at NICT.

Voice conversion (VC) is a technique for transforming acous-
tic domains such as speaker identity, prosody, and emotion while
preserving the linguistic information of the speech. Various DNN-
based methods have also been proposed to replace conventional
Gaussian mixture model (GMM)-based approaches [3] in VC. Par-
ticularly, VC methods based on generative models, such as the
Variational Autoencoder (VAE) [4] and Generative Adversarial Net-
works (GAN) [5], have attracted much attention as high-quality VC
methods that do not require parallel speech for training [6–8].

Popular approaches that focus on the enhancement of intelli-
gibility include the following: a GMM-based method to convert
formant and vowel features [9], building a dictionary based on
non-negative matrix factorization (NMF) [10], GAN-based ap-
proaches [11, 12], and knowledge distillation from an end-to-end
TTS model trained by healthy speech into dysarthric speech recog-
nition model [13]. One concrete application of these approaches is
to improve intelligibility in real-time by recognizing the speech of
impaired people when they are speaking. However, these approaches
are not always appropriate for people with dysarthria due to cerebral
palsy, which we focus on in this study, because the speech act itself
is a burden to the patient.

In contrast, the TTS-based approach solves the above problems
relatively easily by providing input devices that are less burden-
some for the patient. As the most popular approach, [14] recorded
the speech of patients with amyotrophic lateral sclerosis (ALS) be-
fore their speech deteriorates to build personalized TTS systems.
However, because the athetoid cerebral palsy is a congenital disease
in almost all cases, this approach cannot be applied to this need.
What follows are approaches for dealing with the dysarthric speeech
caused by athetoid cerebral palsy. In [15], the HMM-based TTS
system was proposed that improve intelligibility by applying correc-
tions for duration and fundamental frequency using an unimpaired
person’s model. [16] proposed the high-intelligibility speech synthe-
sis system that connects a healthy TTS model based on bi-directional
long short-term memory and CycleGAN-VC. However, the quality
and conversion performance was insufficient due to the deterioration
of the quality of the TTS speech and the inadequate ability to ensure
the intelligibility of a healthy speaker in CycleGAN-VC.

In this paper, we present a high-intelligibility speech synthesis
method for dysarthric speakers using transformer-based TTS [17,
18], CycleVAE-VC [7], and a LPCNet vocoder [19] as state-of-the-
art high-fidelity neural TTS, VC, and vocoder. First, a transformer
TTS is trained with transcribed unimpaired speech. Second, acous-
tic features output by TTS are converted by CycleVAE-VC so they
have the individuality of the target dysarthric speaker. CycleVAE-
VC is one of the non-parallel VC architectures, and has been pro-
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Fig. 1. The flow of the proposed method and training dataset on each component.

vided as a baseline model for a cross-lingual voice conversion task
in the Voice Conversion Challenge 2020 (VCC2020) [20,21]. We as-
sume that healthy-to-dysarthric VC is a similar task to cross-lingual
VC, which transfers speaker identity between domains with different
linguistic characteristics, and we expect it can transfer the individ-
uality of dysarthric speech to healthy speech ignoring the collapsed
language features of the target dysarthric speaker. Finally, the con-
verted acoustic features are synthesized into speech using a LPCNet
vocoder. In [22], we confirmed that LPCNet is capable of sufficient
training even in cases where a large amount of speech data cannot be
prepared, such as in the case of those with dysarthria, and LPCNet
outperforms the Parallel WaveGAN [23] used in a baseline system
in [21] that was trained using a small amount of training data.

2. PROPOSED METHOD

The architecture of our proposed method is shown in Fig. 1. The pro-
posed method consists of three components: (1) Transformer-TTS is
trained using speech data of physically unimpaired person; (2) Non-
parallel VC with CycleVAE is performed to give the individuality of
the target dysarthric speaker to acoustic features of healthy speech
synthesized by TTS; and (3) Converted features are synthesized into
speech using a LPCNet vocoder.

2.1. Text-to-speech

For TTS, we use the Transformer-based acoustic model which
archived state-of-the-art speech quality [18]. This TTS model is
trained on the speech data of a Japanese female healthy speaker and
produces acoustic features with high intelligibility. The input to this
model is not only the phoneme sequence but also the context features
for accent estimation. It has been mentioned in [24] that it is nec-
essary to add an external input in addition to the phoneme sequence
for speech synthesis in a pitch-accent language such as Japanese.
The output of the model is 32-dimensional acoustic features con-
sisting of a 30-dimensional Bark-Frequency Cepstrum Coefficients
(BFCCs), pitch period, and pitch correlation. In the following, we
will refer to these features as LPCN features.

2.2. Non-parallel VC based on Cyclic VAE

For healthy-to-dysarthria VC, this paper use CycleVAE, which is
based on VAE-VC with an additional cyclic-consistent approach. In
VAE-VC, the encoder compresses the acoustic features of the input
into latent space and then the decoder takes the one-hot speaker code
and reconstructs the features. By conditioning the speaker code, the
latent space is assumed to contain only speaker-independent linguis-
tic features. However, it has been found in [7] that optimization us-
ing only the reconstruction of acoustic features does not provide suf-
ficient conversion performance. CycleVAE re-inputs the converted

acoustic features into the encoder and adds a constraint that allows
the previous acoustic features to be reconstructed, and this process
provides higher conversion performance [7].

In this paper, the input acoustic features are the LPCN features
described above. The LPCN feature include the pitch period and
pitch correlation corresponding to the excitation signal such as the
fundamental frequency and the voiced/unvoiced vectors. In a gen-
eral VC task, excitation features are converted using a linear trans-
formation because they are non-continuous values. In contrast, pitch
period and pitch correlation are continuous values calculated by an
open-loop cross-correlation search algorithm. Thus, all LPCN fea-
tures can be subjected to non-linear conversion using CycleVAE.

As mentioned above, since CycleVAE is conditioned on one-hot
speaker codes, it is assumed that only linguistic features, such as
phonetics, are represented in the latent space. When training with
both healthy and dysarthric speech, healthy and collapsed linguis-
tic features will be mapped to the identical linear space. If the la-
tent space properly represents the relationship between healthy and
collapsed linguistic features, it should be possible to perform high-
quality VC from healthy to dysarthric speakers.

2.3. LPCNet

The acoustic features estimated by CycleVAE are synthesized into
speech by LPCNet. LPCNet is a WaveRNN-based neural vocoder
model with recurrent neural network architecture. LPCNet predicts
residual signals between natural speech and predicted speech com-
puted using linear prediction coding (LPC). The original LPCNet
was designed to perform speech synthesis with a sampling frequency
of 16 kHz, but it has been modified in this paper to perform 24 kHz
synthesis. Specifically, as mentioned above, we expand the number
of BFCCs from 18 to 30 as [25].

For synthesizing the speech of a dysarthric speaker with im-
proved intelligibility, there are two types of training datasets: only
using the speech data of the target dysarthric speaker, and also us-
ing the speech of healthy speakers. The former case guarantees the
individuality of synthetic speech, but noise is mixed when trying
to synthesize speech with improved intelligibility. The latter case
suppresses the noise in the synthetic speech, but the individuality is
lost to some extent. Additionally, we perform the data augmentation
proposed in [21] to obtain a more robust vocoder against mismatches
between naturally extracted and converted acoustic features. Specifi-
cally, we train LPCNet with a natural feature, a reconstructed feature
and a cyclically reconstructed feature as input features. In this pa-
per, the case of using only the target speech of dysarthric speaker
refers to single-speaker training (SS), and the case of using speech
data of dysarthric and healthy speakers and reconstructed features of
CycleVAE refers to multi-speaker training (MS).



3. EXPERIMENT

3.1. Experimental conditions

Dataset: As the speech data of the healthy subjects, we used the
single-Japanese female speech database in the JSUT corpus [26] and
the multi-Japanese speech database in the JVS corpus [26]. As the
speech data of the dysarthric subject, we recorded speech uttered by
one subject having dysarthria caused by athetoid cerebral palsy. The
dysarthric subject read 430 sentences included in the ATR Japanese
speech database [27]. Also, for all the utterances, the sampling fre-
quency is adjusted to 24 kHz.

Evaluation conditions: As the baseline, we evaluated the
CycleVAE using the WORLD [28] features with Parallel Wave-
GAN [23] provided as a baseline system in VCC2020 (Cyc-
VAE PWG), and non-cyclic VAE using LPCN features (VAE LPCN).
As the proposed method, we evaluated two conditions of SS and MS
training on LPCNet (CycVAE LPCN). Additionally, as the refer-
ence speech for individuality and intelligibility evaluations, we used
WSOLA [29] to convert the speaking rate of the dysarthric speech
to healthy speakers. This is to reduce the difficulty of evaluation
due to different speaking rates. Also, only in the phoneme error
rate (PER) experiment described later, the analysis synthesis (AS)
of the dysarthric subject was included in the condition.

Acoustic model: For the TTS conditions, the Transformer-
based acoustic model was trained using 4,800 sentences in the JSUT
corpus (Basic5000-0201 to Basic5000-5000) because HTS-style
context labels based on manual annotation are available.1 100 utter-
ances (Basic5000-0101 to Basic5000-0200) were used for validation
and the remaining 100 utterances were used for evaluation. Simple
47-dimensional vectors constructed from 38-dimensional phoneme
one-hot vectors and 9-dimensional accentual label vectors were
used for the acoustic models. The network architecture was based
on Transformer-TTS in ESPNet-TTS [30] implementation and we
conducted some modifications to input the accent label vectors.
The output features of the acoustic model for (Cyc)VAE LPCN
and CycVAE PWG were 32-dimensional LPCN features and 55-
dimensional WORLD features (voice/unvoiced vector, continuous
logF0, 3-dimensional aperiodicity components and 50-dimensional
mel-cepstra) with a frame shift of 10 ms, respectively.

Voice conversion: For VC conditions, CycleVAE using WORLD
features (CycVAE PWG), VAE using LPCN features (VAE LPCN)
and CycleVAE using LPCN features (CycVAE LPCN) were used.
All implementations were based on the official implementation of
VCC2020 and we conducted some modifications for each con-
dition. For training, we used 100 utterances in the JSUT cour-
pus (Basic5000-0001 to Basic5000-0100), 100 utterances generated
by TTS (Basic5000-0001 to Basic5000-0100), 100 utterances by
four male speakers in the JVS courpus (parallel100 of JVS001,
JVS003, JVS005, and JVS006) and 100 utterances by the dysarthric
speaker. Although the utterances of the JVS speakers were not used
for evaluation, they were used in training to assist in proper opti-
mization of VAE. For evaluation, we used 20 sentences synthesized
by TTS included in the ATR Japanese speech database.

Neural vocoder: We used LPCNet or Parallel WaveGAN ac-
cording to each experimental condition. The network architecture
of LPCNet was based on the official implementation [19] and we
conducted modifications for expansion of the number of BFCCs di-
mensions. The network architecture of Parallel WaveGAN was the
same as an implementation in [21]. For SS training, we used 370
utterances by the dysarthric subject. For MS training, in addition

1https://github.com/sarulab-speech/jsut-label

Table 1. Results of Naturalness MOS test with 10 listening subjects.
Method Score Method Score

ORIGINAL 4.15± 0.16
CycVAE
PWG MS 1.79± 0.12

WSOLA 3.72± 0.15
VAE

LPCN SS 1.98± 0.17

JSUT-TTS 4.69± 0.07
CycVAE
LPCN SS 2.39± 0.11

CycVAE
PWG SS 1.68± 0.11

CycVAE
LPCN MS 2.71± 0.11

to the datasets in SS training, we use a total of 3000 non-parallel
speech samples uttered by 100 Japanese subjects in the JVS corpus
and pairs of reconstructed features estimated by CycleVAE and their
correct speech (training dataset of JSUT, JVS001, JVS003, JVS005
and JVS006 under VC conditions). As a result of preliminary exper-
iments, the quality deteriorated when the reconstructed features of
the dysarthric subject were used for training, so these were not used.

3.2. Naturalness evaluation

We conducted mean opinion score (MOS) tests to evaluate the sub-
jective perceptual quality of the synthesized speech waveforms (it
was not included intelligibility in the evaluation criteria). Ten na-
tive Japanese speakers without hearing loss listened to the synthe-
sized speech samples using headphones (20 utterances × 8 condi-
tions = 160 utterances). AS conditions of the dysarthric subject by
LPCN and PWG were not included in the experimental conditions
of this study, as the quality of the sound was sufficiently close to the
original sound through preliminary experiments.

Table 1 shows the result of the naturalness MOS test. Compared
to the original sound and WSOLA, none of the VC conditions could
achieve sufficient quality. When comparing the quality of the vari-
ous VC conditions, all LPCN conditions scored better than the PWG
conditions. Since LPCNet is an autoregressive model and can refer
to past samples to estimate the current sample, it is more robust to
the degradation caused by VC than PWG, which can only refer to
the current acoustic features to estimate the waveform. Regarding
the LPCN condition, the VAE condition did not achieve a sufficient
score because it did not use cyclic optimization. In comparison to
MS and SS, MS achieved a higher score. This confirms the superi-
ority of using healthy speech and the reconstruction features of Cy-
cleVAE for the training of the neural vocoder.

3.3. Individuality evaluation

We conducted an individuality ABX test to make sure that the syn-
thesized speech of the proposed method contains the individuality of
the target dysarthric speaker. Subjects were the same as those in the
Naturalness experiment. Subjects listened to two randomly arranged
reference samples (WSOLA and JSUT-TTS) and a synthetic speech,
and rated the speaker’s proximity to one of the reference speech on
a two-point scale (20 utterances × 3 conditions = 60 utterances).

Table 2 shows the result of the individuality ABX test. Cyc-
VAE PWG MS showed a significant difference on the WSOLA side.
This result is good in itself, but there are still problems in terms of
naturalness. VAE LPCN MS showed a significant difference on the
JSUT-TTS side. This result shows that the lack of cyclic optimiza-
tion resulted in insufficient normalization of speaker individuality
over the latent space. CycleVAE LPCN MS was not significantly



Table 2. Results of individuality ABX test with 10 listening subjects.
Method WSOLA JSUT-TTS p-value

CycVAE PWG MS 0.67 0.33 2.1× 10−6

VAE LPCN SS 0.21 0.79 3.8× 10−16

CycVAE LPCN MS 0.49 0.51 7.0× 10−2

Table 3. Results of intelligibility AB test with 10 listening subjects.
Method Score p-value Conventional

CycVAE
PWG MS 0.50 vs. 0.33 7.9× 10−1 WSOLA

CycVAE
LPCN MS 0.63 vs. 0.22 4.6× 10−3 WSOLA

CycVAE
LPCN MS 0.72 vs. 0.13 1.7× 10−5 CycVAE

PWG MS

different between the two conditions. Subjects commented that they
had the individuality of a dysarthric speaker in terms of pitch, but
lost some of the individuality due to improvements in prosody and
intelligibility. Therefore, although individuality transfer is good, its
accurate evaluation of individuality is a challenging task.

3.4. Intelligibility evaluation

We conducted a subjective evaluation by AB test and an objective
evaluation by phoneme error rate (PER) to evaluate the intelligibility
of the proposed method. In the subjective evaluation, subjects were
the same as those in the naturalness and individuality experiments.
Subjects listened to two randomly arranged samples and rated which
one had better intelligibility using the following answers: 1) the
former, 2) the latter, and 3) neutral (20 utterances × 3 conditions
= 60 utterances). For the objective evaluation, the automatic speech
recognition (ASR) system was trained using speech data of multiple
unimpaired speakers in the ATR Japanese speech database [27].

Table 3 shows the result of the intelligibility AB test. There was
no significant difference between CycVAE PWG MS and WSOLA
in intelligibility. This is because the quality of the synthesized
speech degraded significantly with CycVAE PWG MS. This result
indicates that the individuality result in section 3.3 was due to a
smaller loss of individuality resulting from the improvement in in-
telligibility. CycVAE LPCN MS achieved significant scores against
both WSOLA and CycVAE PWG MS.

Table 4 shows the PERs of all conditions. The AS conditions
have achieved a naturalness close to the original in preliminary
experiments, but the score of PER is similar to the original as
well. In the VC condition, the VAE LPCN SS was closest to the
JSUT-TTS score. According to the results of section 3.3, since
the VAE LPCN SS did not transfer individuality sufficiently, the
intelligibility of the VAE LPCN SS did not deteriorate much. The
proposed method (CycVAE LPCN) achieved the next highest score,
but when comparing SS and MS, the former gave better results. The
CycVAE LPCN MS sample sometimes contains impulse-like noise
that SS does not have, and we assume that it caused the decrease in
PER. A detailed investigation is a topic for future work.

3.5. Analysis on latent features

We analyzed how the linguistic features of a dysarthric speaker and
healthy speaker are distributed in latent space in the CycleVAE.
Fig. 2 plots the latent features of five types of Japanese phonemes (a,

Table 4. PERs [%] for a variety of methods.
Method PER Method PER

ORIGINAL 72.6 CycVAE PWG SS 60.4
WSOLA 68.5 CycVAE PWG MS 51.4

PWG AS MS 74.4 VAE LPCN SS 28.6
LPCN AS MS 75.9 CycVAE LPCN SS 31.5

JSUT-TTS 11.8 CycVAE LPCN MS 36.6

Fig. 2. Latent features in three speakers and five different phonemes.
The 32-dimensional latent features are compressed and plotted in 2-
dimensions using the t-SNE algorithm.

e, i, sh, and ts) of the two healthy subjects (JSUT and JVS001) and
dysarthric speaker (DYS), compressed in two dimensions. The five
phonemes are selected as vowels (a, e, and i), which are relatively
easy for dysarthric speakers to pronounce, and unvoiced consonants
(sh and ts), which are more difficult to pronounce.

As for the distribution of vowels, although the dispersion was
larger in the dysarthric subject than in the healthy subjects, the latent
features were distributed in almost the same locations. Therefore,
these phonemes can be converted in the same way as the VC be-
tween healthy subjects. Regarding unvoiced consonants, the latent
features of the two healthy subjects were distributed at almost the
same location, while those of the dysarthric subject were distributed
at a different location. It means that the CycleVAE was trained in
these phonemes as “Healthy” and “Dysarthric” separately. When
VC is conducted on these phonemes, the acoustic features when the
dysarthric speaker utters “Healthy” phonemes are estimated to main-
tain high-intelligibility.

4. CONCLUSION

In this paper, we presented a high-intelligibility speech synthe-
sis method for dysarthric speakers that is achieved by connecting
Transformer-TTS, CycleVAE-VC, and LPCNet. Through experi-
ments, we found that CycleVAE can properly represent the rela-
tionship of lingual characteristics between healthy and dysarthric
speakers and can perform the advanced VC task. Additionally, we
also found that LPCNet worked robustly against features that were
degraded by VC. In future work, we will consider a method to im-
prove the naturalness of the converted speech and compare it with
other non-parallel VC methods.
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