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ABSTRACT
This paper investigates state-of-the-art Transformer- and FastSpeech-
based high-fidelity neural text-to-speech (TTS) with full-context la-
bel input for pitch accent languages. The aim is to realize faster train-
ing than conventional Tacotron-based models. Introducing phoneme
durations into Tacotron-based TTS models improves both synthe-
sis quality and stability. Therefore, a Transformer-based acoustic
model with weighted forced attention obtained from phoneme dura-
tions is proposed to improve synthesis accuracy and stability, where
both encoder–decoder attention and forced attention are used with
a weighting factor. Furthermore, FastSpeech without a duration
predictor, in which the phoneme durations are predicted by another
conventional model, is also investigated. The results of experiments
using a Japanese female corpus and the WaveGlow vocoder indi-
cate that the proposed Transformer using forced attention with a
weighting factor of 0.5 outperforms other models, and removing
the duration predictor from FastSpeech improves synthesis quality,
although the proposed weighted forced attention does not improve
synthesis stability.

Index Terms— Speech synthesis, sequence-to-sequence model,
Transformer, forced alignment, weighted forced attention

1. INTRODUCTION

Text-to-speech (TTS) is an important speech communication tech-
nology. A neural network-based autoregressive (AR) generative
model called WaveNet outperforms conventional TTS systems [1],
and neural vocoders that directly synthesize raw speech waveforms
from acoustic features have also been achieved [2, 3].

Additionally, end-to-end TTS approaches directly convert-
ing text to raw speech waveforms using sequence-to-sequence
(seq2seq) networks based on an attention mechanism have been
investigated [4–7]. Although conventional TTS systems separately
train duration models and acoustic models (AMs), seq2seq mod-
els jointly train them without a pipeline structure. Consequently,
Tacotron 2 can realize end-to-end TTS for English with the same
quality as natural speech by introducing a long short-term mem-
ory (LSTM)-based seq2seq model and AR WaveNet vocoder to
solve the pipeline structure and source-filter vocoder problems in
conventional TTS [8].

However, Tacotron 2 cannot be directly applied to pitch accent
languages, such as Japanese [9], and the inference speed of AR
WaveNet is quite slow owing to the AR structure [1–3]. For realiz-
ing real-time seq2seq-based TTS systems for pitch accent languages,
a real-time neural TTS system for Japanese using a seq2seq model
with full-context label input based on Tacotron 2 and a WaveGlow
vocoder [10] has been provided [11].1

1Seq2seq models for Chinese and English with linguistic features can also
improve synthesized speech quality [12, 13].

The training speed of Tacotron 2 is slower than that of convo-
lutional neural network (CNN)-based models [6, 7] because it intro-
duces an LSTM structure. To realize seq2seq-based TTS with faster
training, an alternative seq2seq model based on the Transformer [14]
constructed from feedforward networks (FNNs) with phoneme input
has been proposed. It achieved TTS for English with almost the
same quality as that of Tacotron 2 [15]. Although the training speed
of the Transformer is fast, its inference time is slower than that of
Tacotron 2 because it also has recurrent connections in the infer-
ence and the network size of the Transformer is larger than that of
Tacotron 2 [15].2

Although seq2seq models based on an attention mechanism can
jointly optimize duration models and AMs and realize high-fidelity
synthesis without forced alignment used in conventional TTS mod-
els, they run the risk that speech samples cannot always be suc-
cessfully synthesized because of attention prediction errors. In con-
trast, this problem does not occur in conventional duration-acoustic
pipeline models because the phoneme durations can be almost al-
ways accurately predicted.

To avoid the attention prediction error problem, Tacotron-based
acoustic models with phoneme alignment instead of an attention
mechanism have been investigated [17].3 In [17], an AM constructed
from a bidirectional LSTM and Tacotron decoder with phoneme
alignment was proposed (Fig. 1). Unlike Tacotron 2, the proposed
pipeline model with full-context label input was able to realize real-
time and high-quality neural TTS for Japanese with the WaveGlow
vocoder without attention prediction errors.

For simultaneously solving the inference speed and attention
prediction error problems in Transformer-based TTS, FastSpeech,
which is based on a feedforward Transformer, was recently pro-
posed [20]. In FastSpeech, the phoneme durations are obtained
from a teacher Transformer without forced alignment, and the
phoneme durations and mel-spectrograms are jointly predicted from
the phoneme sequences. FastSpeech can realize stable TTS for En-
glish with much faster inference and a quality that is equal to those
of Tacotron 2 and the Transformer [20].

For TTS systems, not only inference speed but also training
speed are important. Therefore, this paper investigates state-of-
the-art Transformer- and FastSpeech-based AMs with full-context
label input for pitch accent languages because these models were
only investigated with phoneme input for English. Additionally, the
phoneme alignment obtained from a conventional hidden Markov
model (HMM)-based forced alignment [21] is also introduced to
these AMs to improve the synthesis accuracy and stability as a

2A reduction factor provided in [5] is also efficient for Transformer-based
TTS. It can significantly reduce both the training and inference time, but
slightly degrades the synthesis quality [16].

3Although the phoneme durations were additionally introduced into
seq2seq models to control speech duration and improve attention prediction
accuracy in [18,19], these models are still based on an attention mechanism.
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Fig. 1. AM based on a bidirectional LSTM and Tacotron decoder
with full-context label input using phoneme alignment [17]. This
model is called “BLSTM+Taco2dec” in the experiments.
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Fig. 2. Proposed Transformer-based AM with weighted forced at-
tention for full-context label input. If w = 0, this corresponds to
vanilla Transformer-based TTS [15].

pipeline AM with the Tacotron decoder [17]. For the Transformer, a
weighted forced attention approach is proposed for simultaneously
using both the encoder–decoder alignment and forced alignment
with a weighting factor (Fig. 2). To investigate FastSpeech without a
phoneme duration predictor network, two types of FastSpeech-based
AMs using forced alignment are also compared (Figs. 3(b) and (c)).

2. PROPOSED TRANSFORMER-BASED AM WITH
WEIGHTED FORCED ATTENTION

Transformer-based TTS employs a multi-head self-attention mecha-
nism in the encoder and decoder instead of the LSTM structures in
Tacotron 2 and can be trained more quickly than Tacotron 2 [15].
In vanilla Transformer-based TTS, phoneme sequences are input
to the trainable embedding layer as in Tacotron 2. To investigate
Transformer-based TTS with full-context label input, a 1× 1 convo-
lution layer is also introduced in the encoder pre-net instead of the
embedding layer as in [11, 17].

To directly introduce forced alignment in the Transformer, the
encoder–decoder attention is replaced by monotonic attention based
on forced alignment, as investigated in Tacotron-based AMs [9, 17,
22]. However, the monotonic forced attention approach for Japanese
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Fig. 3. FastSpeech-based AMs with full-context label input: (a) de-
fault model, (b) FastSpeech without a duration predictor, (c) sim-
ple FastSpeech without duration predictor and positional encodings.
“FFT block” denotes the feedforward Transformer network of [20].
These models do not introduce teacher–student training and HMM-
based forced alignment is used in training.

is inferior to vanilla Tacotron and pipeline models [9,17]. This might
be because the duplicated frame-level hidden features are input to
the decoder, and they might be redundant for the decoder [17]. To
avoid the redundancy problem, the pipeline AM with Tacotron de-
coder (Fig. 1) was proposed [17]. However, this model also includes
LSTM networks.

To avoid the redundancy problem in Transformer-based TTS, a
weighted forced attention method is proposed, as shown in Fig. 2.
This model can simultaneously use both the encoder–decoder atten-
tion and forced attention with a weighting factor 0 ≤ w ≤ 1. Al-
though the Transformer has multi-head attention, the same weighting
factor is applied to all the attention heads in this initial investigation.
The vanilla Transformer and one with forced attention correspond to
the cases with w = 0 and w = 1, respectively. When using w > 0,
this model only minimizes the loss for acoustic features without min-
imizing the loss for the “stop token,” as in [17]. Additionally, when
using 0 < w < 1, this model can avoid the redundancy problem
in the case of w = 1 by effectively using both the encoder–decoder
attention and forced attention. Therefore, this approach should im-
prove encoder–decoder attention accuracy. As a result, the synthesis
accuracy and stability can also be improved, as in the Tacotron-based
AM with phoneme alignment [17].

3. FASTSPEECH WITHOUT DURATION PREDICTOR

To investigate FastSpeech with full-context label input, a 1× 1 con-
volution layer is also used to replace the embedding layer in vanilla
FastSpeech, as shown in Fig. 3(a). All of the network structure ex-
cept for the 1 × 1 convolution layer is the same as the structure
in [20].

In vanilla FastSpeech, the mean squared error losses for both
acoustic features and phoneme durations are simultaneously mini-
mized [20]. However, phoneme durations can be almost accurately
predicted by conventional models [17]. Therefore, FastSpeech with-



out a duration predictor, where phoneme durations are predicted by
another model based on a teacher Transformer, as in [20], or forced
alignment, as in conventional pipeline models, is also investigated
(Fig. 3(b)). This model should also improve synthesis accuracy be-
cause this model only minimizes the loss for acoustic features, as
does the Tacotron-based AM [17] and the proposed Transformer
with weighted forced attention. Furthermore, a simple FastSpeech
without a duration predictor and positional encodings, as shown in
Fig. 3(c), is investigated. In this model, the hidden features from
the 1 × 1 convolution layer are directly input to the length regula-
tor. Then, the encoder and decoder are directly connected as simple
feedforward Transformer blocks.

Vanilla FastSpeech is based on teacher–student training, and a
teacher Transformer is required for sequence-level knowledge dis-
tillation [23] and weight initialization [20]. In this paper, teacher–
student training is not introduced in FastSpeech-based AMs in Fig. 3.

4. EXPERIMENTS

4.1. Experimental conditions

To evaluate the proposed Transformer with weighted forced attention
and FastSpeech without a duration predictor and compare these AMs
with Tacotron-based AMs [17], experiments were conducted using
a Japanese female speech corpus (neutral data) with a sampling fre-
quency of 24 kHz. A total of 25,046 (18 h) and 80 utterances were
used as the training set and test set, respectively [11, 17].

The full-context labels were extracted by the text analyzer used
in [11, 17, 24]. Although the number of dimensions of the linguistic
feature vectors for a frame-wise FNN-based AM was 483 [24], the
number used in the experiments was 130 as in [11, 17], because the
two past and future contexts can also be reduced for Transformer-
and FastSpeech-based AMs with self-attention structures.4 The label
vectors were normalized to the range [0, 1].

Mel-spectrograms are used as acoustic features. 80-dimensional
log-mel-spectrograms were analyzed every 12.5 ms over a Hann
window with a length of 85.3 ms, with a frequency band of 125–
7,600 Hz, and normalized to the range [0, 1], as in [8, 11, 17].

For real-time inference, the WaveGlow vocoder [10] trained
with the ground-truth mel-spectrograms was employed to convert
the predicted mel-spectrograms to speech waveforms. In WaveGlow,
all the model parameters were the same as those used in [10,11,17].

In the experiments, 12 AMs with full-context label input were
trained and evaluated, as shown in Table 1, which lists the train-
ing period, real-time factor (RTF) for AMs and total RTF. In addi-
tion, results for a duration model and a WaveGlow vocoder using an
NVIDIA Tesla V100 GPU are listed. Models (A) to (C) are seq2seq
AMs and (D) to (L) are AMs using phoneme alignment. The number
of output channels of the 1× 1 convolution layer for the full-context
label vector input was 512 for (A) to (C) and (E) to (L).

Model (A) is the Tacotron 2, and the network parameters were
the same as those used in [11, 17]. The batch size was 64 and this
model was trained using two NVIDIA Tesla V100 GPUs. Although
the learning rate was 0.001 in [11, 17], the synthesis quality was
improved using a learning rate of 0.0001 in the experiments.

Models (B) and (C) are respectively a Transformer-based AM
using FNN layers, as used in [15], and a Transformer-based AM
using 1× 1 CNN layers instead of FNN layers, as proposed in [20].

4Tacotron 2 for Japanese with full-context label input including the past
and future contexts was also investigated in [25].

Table 1. Experimental conditions of AMs (A) to (L), duration model
and WaveGlow vocoder including real-time factors (RTFs) for in-
ference using a GPU and PyTorch. (B) and (C) Transformer-based
AMs with FNN and 1 × 1 CNN layers, respectively. (D) A simple
bidirectional-LSTM AM and (E) the Tacotron-based AM in Fig. 1.
(F) to (I) The proposed Transformer-based AMs using weighted
forced attention with w = 0.2, 0.5, 0.7 and 1.0 in Fig. 2, respec-
tively. (J) to (L) The FastSpeech-based AMs in Figs. 3(a) to (c),
respectively. “TP,” “AM RTF,” and “Total RTF” denote the training
period, real-time factor (only for AMs), and total real-time factor for
duration and AMs, and WaveGlow vocoder, respectively.

Method TP (days) AM RTF Total RTF
(A):Tacotron 2 24 0.063 0.13
(B):TF (FNN) 6 0.55 0.62
(C):TF (Conv1D) 6 0.55 0.62
(D):BLSTM 3 0.015 0.12
(E):BLSTM+Taco2dec 12 0.061 0.13
(F)-(I):TF-WFA 6 0.55 0.62
(J):FS (Default) 6 0.004 0.070
(K):FS (w/o-DP) 6 0.004 0.072
(L):FS (Simple) 6 0.004 0.072
Duration model 2 - 0.002
WaveGlow vocoder 30 - 0.066

Models (D) and (E) are respectively a simple bidirectional
LSTM-based AM [26] and the Tacotron-based AM in Fig. 1. The
network parameters were the same as those used in [17].

Models (F) to (I) are the proposed Transformer-based AMs us-
ing weighted forced attention with weighting factors of w = 0.2,
0.5, 0.7, and 1.0, respectively. In (F) to (I), FNN layers were used,
as in (B). In the Transformer-based AMs (B), (C), and (F) to (I), eight
heads were used in the multi-head attention and six layers were used
in the encoder and decoder blocks. The learning rate was 0.00005.
All other network parameters except for those of the 1× 1 convolu-
tional layers were the same as those used in [15].

Models (J) to (L) are FastSpeech, FastSpeech without a dura-
tion predictor, and a simple Fastspeech without a duration predictor
and positional encodings, as shown in Fig. 3, respectively. In these
models, 1× 1 CNN layers were also used to replace the FNN layers
in the feedforward Transformer blocks, following [20]. The learn-
ing rate was 0.00005. All network parameters except for those of
the 1 × 1 convolutional layers were the same as those used in [20].
Transformer- and FastSpeech-based AMs were trained with eight
NVIDIA Tesla V100 GPUs.

Mono-phone HMM-based forced alignment was employed in
(D) to (L). The phoneme durations were then obtained based on
the forced alignment. A simple bidirectional LSTM-based duration
model [27] was also compared, as in [17].

All the training steps and inferences were implemented using
PyTorch [28]. An Adam optimization algorithm [29] was introduced
in all the neural network models. The training period and RTF for
the duration model and WaveGlow are also provided in Table 1.

To subjectively evaluate the speech waveforms synthesized by
these TTS models, mean opinion score (MOS) tests [30] were con-
ducted. As in [11, 17], the analysis-synthesis conditions of Wave-
Glow and STRAIGHT [31] vocoders were also included. Twenty
utterances successfully synthesized by all the AMs from the test set
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Fig. 4. Results of the MOS test with 20 listening subjects. The confidence level of the error bars is 95 %.

were used as the evaluation set, as in [20]. These were presented
through headphones to 20 Japanese adult native speakers without
hearing loss (20 utterances × 15 conditions, including the original
test set waveforms = 300 utterances).

4.2. Results and discussion

The MOS results are plotted in Fig. 4. First, the Transformer- and
FastSpeech-based AMs with full-context label input for pitch accent
languages can be successfully trained faster than Tacotron-based
AMs (A) and (E). However, the synthesis speed of the Transformer-
based AMs was slower than that of other AMs although the RTF
was kept below 1.0 by using a GPU.

Although (E) outperformed (A) and four test set utterances out
of 80 could not be successfully synthesized by (A) in [17], the per-
formance of (A) could reach that of (E) and all 80 test set utterances
could be successfully synthesized by (A) by changing the learning
rate to 0.0001 in the experiments. Additionally, (B) could also real-
ize the same synthesis quality as (A) and (E).

The most important contribution of this paper is that the pro-
posed Transformer-based AM using weighted forced attention with
w = 0.5 (G) significantly outperformed other AMs.5 However,
other weighting conditions (F), (H), and (I) could not outperform (B)
(with w = 0). This result indicates the redundancy of the encoder
input is increased when w > 0.5 and the effect of forced attention
cannot be sufficiently used when w < 0.5. Therefore, it is better to
use the same weights for the encoder–decoder attention and forced
attention to effectively use both types of attention.

Although FastSpeech-based AMs (J) to (L) could synthesize
speech waveforms faster than other AMs, their synthesis qualities
were not high. This might be because the sequence-level knowledge
distillation [23] and weight initialization using a teacher Trans-
former [20] were not employed. However, FastSpeech without a
duration predictor (K) significantly outperformed FastSpeech with
a duration predictor (J). Therefore, the use of conventional duration
models is also effective for FastSpeech. In contrast, the simple
model (L) was not effective.

All 80 test set utterances could be successfully synthesized by

5Like the Tacotron-based AM in [17], (B) slightly outperformed the
analysis-synthesis condition of WaveGlow. This might be because the pre-
dicted durations tended to be slightly longer than the original durations, and
this might have been more suitable for the listening subjects.

Tacotron 2 (A), LSTM-based AMs (D) and (E), and FastSpeech-
based AMs (J) to (K). However, 6–10 speech waveforms out of
80 test set utterances synthesized by each Transformer-based AM
included word skipping and repeats, even though the proposed
weighted attention with w = 1.0 was used. This is because the word
skipping and repeating problem occurs if the self-attention weights
of the encoder and decoder are not diagonal even when the encoder–
decoder attention weights are diagonal. Unsuccessfully synthesized
utterances differed according to the models. Further analysis of the
error tendencies and additional investigation, such as modification
of the self-attention mechanism, will be required in future work.

Consequently, the proposed Transformer-based TTS using
weighted forced attention with w = 0.5 can improve the syn-
thesis quality, although the synthesis stability cannot be improved.
Additionally, FastSpeech without a duration predictor combined
with another duration model can also improve the synthesis quality.

5. FUTURE WORK

The proposed Transformer-based AM with weighted forced atten-
tion should be further investigated to improve the synthesis stability
to the level of FastSpeech. Although fixed weighting factors were
introduced in this initial investigation, trainable weighting factors
could also be introduced for multi-head attention weights. Addi-
tionally, the proposed weighted forced attention could also be di-
rectly introduced to Tacotron 2. Furthermore, teacher–student train-
ing should also be introduced to FastSpeech with full-context label
input for pitch accent languages to improve the synthesis accuracy.

6. CONCLUSIONS

This paper investigated Transformer- and FastSpeech-based neural
TTS with full-context label input to realize training that is faster than
that of Tacotron-based AMs. Additionally, Transformer-based AM
with weighted forced attention was proposed to improve the synthe-
sis accuracy and stability. FastSpeech without a duration predictor
was also investigated. The results of the experiments suggest that the
proposed Transformer using weighted forced attention with w = 0.5
significantly outperforms other AMs, and FastSpeech without du-
ration prediction could realize higher synthesis accuracy than Fast-
Speech with duration prediction, although the proposed weighted
forced attention did not improve the synthesis stability.
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