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Abstract—Speech masking system with spatially separated
maskers is proposed by utilizing multiple sound spot synthesis
and multi-speaker neural text-to-speech (TTS) technologies. Al-
though previous systems introduce time-reversed signals of target
speech for maskers, these meaningless sounds are unpleasant to
listeners. Conversely, the proposed method introduces maskers
with the same voice quality as a target speech generated by multi-
speaker neural TTS model with global style tokens. Additionally,
these TTS-based maskers are synthesized by multiple sound
spot synthesis in multiple directions. Then, the target speech
can only be heard at the target direction while multiple TTS-
based meaningful maskers can also be easily heard at the other
directions without discomfort. We implement a speech masking
demo system with a compact circular array of 16 loudspeakers
carried out with a backpack. In the demonstration, the proposed
speech masking system with spatially separated multiple TTS-
based maskers is demonstrated.

Index Terms—speech masking system, multiple sound spot
synthesis, multi-speaker neural text-to-speech, global style tokens,
loudspeaker array.

I. INTRODUCTION

Compared to parametric arrays of ultrasonic loudspeak-
ers [1], localized sound spot synthesis [2]–[16] (Fig. 1(a)),
which can realize audible and inaudible areas by using
multiple loudspeakers, is superior in terms of the synthesis
sound quality and produced sound pressure level. Additionally,
multiple sound spot synthesis (Fig. 1(b)), which can present
different sounds in different zones simultaneously, is also
an important technology for multilingual speech communi-
cation, museums, and other speech applications. We have
proposed spatial Fourier transform [17]-based multiple sound
spot synthesis methods [4], [6], [7], and implemented with a
compact circular array of 16 loudspeakers [18]. Additionally,
we have implemented a demo system integrating multiple
sound spot synthesis and multilingual simultaneous speech-
to-speech translation on-premise on a laptop without network
connection. Finally, the complete demo system can be carried
out with a backpack [19].

Similar to localized sound spot synthesis and multiple sound
spot synthesis technologies, speech privacy [20] and sound
masking [21] are also important for speech communication.1

This study was partly supported by JSPS KAKENHI under Grant Number
JP23K11177.

1Several localized sound spot synthesis methods with loudspeaker arrays
considering auditory masking have also been investigated [9]–[11].
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with single masker

Fig. 1. (a) Localized sound spot synthesis system. (b) Multiple sound spot
synthesis system. (c) Speech masking system with single masker. (d) Proposed
speech masking system based on spatially separated multiple maskers gener-
ated by multi-speaker text-to-speech with global style tokens of arbitrary target
speech. All systems are implemented with a circular array of 16 loudspeakers.

In these techniques, maskers (masking signals) are introduced
to make a target sound inaudible.2 Compared with noise-based
maskers [22], maskers generated from a target speech is more
effective [23], and time-reversed signals of a target speech are
introduced [24], [25]. However, the time-reversed signals are
insufficient because these meaningless sounds are unpleasant
to listeners. Additionally, the target speech can be sometimes
heard because the temporal and frequency structures of the
time-reversed signals are different from those of the target
speech.

To introduce meaningful maskers while keeping the mask-
ing performance, we propose a speech masking system by uti-

2As shown in Fig. 1(a), localized sound spot synthesis without masker
cannot be directly used for speech privacy because it is difficult to realize a
completely silent direction, and a target sound can be heard even slightly in
the non-target direction.
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Fig. 2. Compact speech masking demo system with a circular array of 16
loudspeakers carried out with a backpack.

lizing multiple sound spot synthesis and multi-speaker neural
text-to-speech (TTS) technologies. In the proposed method,
multiple maskers with the same voice quality as arbitrary
target speech are generated by multi-speaker neural TTS. Both
speech masking system with single masker (Fig. 1(c)) or that
with multiple maskers (Fig. 1(d)) can be realized by multiple
sound spot synthesis. By the proposed speech masking system
with multiple TTS-based maskers, the target speech can only
be heard at the target direction while multiple TTS-based
meaningful maskers can also be easily heard at the other
directions without discomfort. Similar to the multiple sound
spot synthesis demo system [19], the proposed speech masking
demo system is also implemented with a compact circular
array of 16 loudspeakers carried out with a backpack (Fig. 2).

II. PROPOSED METHOD

A. Multi-speaker neural text-to-speech model

To generate maskers with the same voice quality as ar-
bitrary target speech, multi-speaker neural TTS with global
style tokens (GSTs) [26] is introduced. For stable and faster
inference, a non-autoregressive neural TTS acoustic model
based on [27] combined with GST (Fig. 3(a)) is introduced
although the original TTS model with GST is autoregres-
sive [26]. In the acoustic model, Conformer [28]-based en-
coder [29], ConvNeXt [30]-based decoder [31], and Gaussian
upsampling [32], [33] are introduced. Additionally, phoneme
embedding skip connection is also introduced for stable
phoneme duration control [34], [35]. In the training, alignment
between phoneme sequence and acoustic feature sequence
is gradually trained with monotonic alignment search [33],
[36]. The fundamental frequency estimated in the variance
adapter is analyzed by Harvest [37] in the training. MS-FC-
HiFi-GAN [38] is introduced for the neural vocoder. The
acoustic model and neural vocoder are separately trained and
jointly finetuned [27]. By using the acoustic model and neural
vocoder trained with multi-speaker corpus (e.g. LibriTTS-
R [39]), maskers with the same voice quality as arbitrary target
speech can be generated (Fig. 3(a)).

B. Speech masking system with multiple sound spot synthesis

In the proposed speech masking system, multiple maskers
with the same voice quality as a target speech are first
generated by the multi-speaker neural TTS model with mul-
tiple text sequences and the target speech. Then, the target
speech and multiple maskers are synthesized by spatial Fourier
transform-based multiple sound spot synthesis using a circular
loudspeaker array (Fig. 3(b)). Compared with the previous
speech masking systems with meaningless time-reversed sig-
nals, the target speech can only be heard at the target direction
while multiple TTS-based meaningful maskers can also be
easily heard at the other directions without discomfort by the
proposed speech masking system.

III. IMPLEMENTATION

The multi-speaker English neural TTS acoustic model and
neural vocoder were trained using LibriTTS-R corpus [39].
These models were implemented by ESPnet2-TTS [40] on
PyTorch [41], and were trained using an NVIDIA Tesla A100
GPU with 40 GB of memory. The sampling frequency was
24 kHz. The input acoustic features were 80-dimensional mel-
spectrograms band-limited to 7,600 Hz. The STFT length and
shift length were 1024 and 256 samples, respectively. The test
set speech samples of the AudioMOS Challenge 2025 Track 3
are generated by this neural TTS model [42].

For the demo system, the multi-speaker neural TTS model
was driven on a laptop (Apple MacBook Air M2 15 inch,
Apple M2, 24 GB memory). In the demo system, not only
speech corpora but also actual recorded speech can be used for
the target speech. For the target speech from speech corpora,
the test sets of English female and male speakers from Hi-Fi-
CAPTAIN corpus [43], which is not included in the training,
were used. For multiple sound spot synthesis, the compact
system with a small 16-channel amplifier used in [19] was
introduced. To easily control the target speech signals, maskers
and their output powers, the demo system was implemented
with PureData (Pd) [44] and controlled by a tablet (Apple
iPad Air) via open sound control (Fig. 4). Then, multiple
maskers with the same voice quality as the target speech
can be generated on the laptop. Finally, the target speech
and multiple maskers can be synthesized by multiple sound
spot synthesis using a circular array of 16 loudspeakers. In
the implementation for the proposed speech masking system
with multiple TTS-based maskers, eight-direction sound spot
synthesis was introduced, and single target speech (π/4 rad.)
and five maskers (π/4 rad. × 5) can be synthesized as shown
in Fig. 1(d). In the speech masking system with single masker,
eight-direction sound spot synthesis was also introduced, and
single target speech (π/4 rad.) and single masker (5π/4 rad.)
can be synthesized as shown in Fig. 1(c).

In the implementation, the following speech masking sys-
tems can be demonstrated.
Single masker of noise or environmental sounds with
Fig. 1(c): Although it can be easily realized, the output power
of the masker should be high for high masking performance.
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Fig. 4. Configuration of implemented compact demo system carried out with
a backpack.

Therefore, the target speech is noisy, and listeners at non-
target direction are suffer from the high sound pressure of the
masker.
Single masker of time-reversed signals with Fig. 1(c): The
output power of the masker should also be high for high
masking performance. However, the time-reversed signals are
insufficient because these meaningless sounds are unpleasant
to listeners. Additionally, the target speech can be sometimes
heard because the temporal and frequency structures of the
time-reversed signals are different from those of the target
speech.
Single masker generated by multi-speaker TTS with
Fig. 1(c): The output power of the masker should also be
high for high masking performance. Although the TTS-based
masker is meaningful, the target speech can also be sometimes

heard because the temporal and frequency structures of the
masker generated by multi-speaker TTS are also different from
those of the target speech.
Proposed multiple maskers generated by multi-speaker
TTS with Fig. 1(d): High masking performance can be
realized with low output powers of the maskers because
multiple TTS-based maskers can efficiently mask the target
speech by the superposition of various maskers with different
temporal and frequency structures. Then, the target speech
can only be heard at the target direction while multiple TTS-
based meaningful maskers can also be easily heard at the other
directions without discomfort.

IV. DEMONSTRATION

By using the implemented compact demo system using a
circular array of 16 loudspeakers carried out with a backpack,
the following four demonstrations are provided. In the demon-
stration, not only speech corpora but also actual recorded
speech can be used for the target speech.

• Localized sound spot synthesis (Fig. 1(a))
• Multiple sound spot synthesis (Fig. 1(b))
• Speech masking system with single masker (white noise,

pink noise, environmental sounds [45], time-reversed
signals and speech generated by multi-speaker TTS)
(Fig. 1(c))

• Proposed speech masking system with spatially sepa-
rated multiple maskers generated by multi-speaker TTS
(Fig. 1(d))

Participants can confirm the effectiveness of the proposed
method through demonstrations by freely changing the target
speech signals, maskers and their output powers.
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