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Abstract—We have proposed a fast neural vocoder based on
the source-filter model introducing finite impulse response (FIR)
filters called FIRNet. FIRNet is highly compatible with digital
signal processing (DSP) and can, therefore, generate waveforms
from vocoder parameters and modified voice factors, such as
tone, intonation, and timbre, using DSP. Although modern neural
waveform generation systems, such as voice conversion and
text-to-speech (TTS), have been able to generate human-like
synthetic speech and imitate the reference speaker’s timbre, it is
challenging for these systems to manually control arbitrary voice
factors, unlike traditional TTS systems. By applying FIRNet to
modern neural waveform generation systems, they can achieve
arbitrary voice factor controllability. We will demonstrate two
applications using FIRNet with DSP-based voice factor controls:
one is analysis-synthesis, and the other is text-to-speech.

Index Terms—Speech synthesis, neural vocoder, voice factor
control, digital signal processing.

I. INTRODUCTION

Recent advances in deep learning technology have enabled
high-fidelity speech generation applications, including text-
to-speech (TTS) [1]-[4] and voice conversion (VC) [5]-[7].
The several state-of-the-art neural speech generation systems
can control target voice qualities and speaking styles by using
reference speech data [8]-[10], pitch shifting [11]-[13], and
prompting [14]. However, these systems have some limitations
in terms of controllability, such as the need for references,
narrow pitch control ranges, and iterative trials to achieve the
desired voice qualities. In practical use, it is important factors
for many users of speech generation systems to control voice
factors such as timbre (depth and hoarseness) and prosody
(tone and intonation) freely and indeed to create various
contents using synthetic speech without reference speech.
Reviewing the traditional speech generation systems such as
parametric TTS systems [15], [16], they can control them by
direct modifications of the vocoder parameters [17] based on
the linear digital signal processing (DSP) and generate speech
waveforms using the synthesizer based on the source-filter
model (SFM) [18].

To achieve similar voice factor controls to those of mod-
ern speech generation systems, we prototyped neural speech
generation systems using the FIRNet [19], a high-speed SFM-
based neural vocoder with time-variant finite impulse response
(FIR) filters. Potentially, SFM-based neural vocoders can
convert modified vocoder parameters into their correspond-
ing waveforms exactly because the parameter modifications
involve linear processing, and the above neural vocoders can
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Fig. 1. Details of FIRNet with DSP-based parameter controllers.

capture their characteristics. In addition, the FIRNet performs
higher speed than other SFM-based neural vocoders reported
in [19]. Thus, it is effective to use the FIRNet in terms of the
achievement of our purpose. In the demonstration, we present
two types of applications: one is speech modification using
analysis-synthesis, and the other is a TTS system.

II. FIRNET WITH DSP-BASED VOICE FACTOR
CONTROLLERS

In the demonstration system for analysis-synthesis, we com-
bine the FIRNet with three DSP-based parameter controllers,
as shown in Fig. 1. Note that we employ the parallel FIRNet
architecture due to the high inference speed and speech
quality of synthetic speech [19]. As vocoder parameters, the
FIRNet uses Fg, V/UV, BAP, and MGC that mean fundamental
frequency, voiced/unvoiced flag, banded aperiodicity [20] and
mel-generalized cepstrum [21], respectively. In this paper,
these vocoder parameters are extracted with WORLD analysis
tools [17], [22], [23] and Speech Signal Processing Toolkit
(SPTK) [24].

A. Fy controller

The Fy controller generates the modified F{y contour based
on the input control parameters as follows:

ft:’r*eXp{’U*(logft—m)+m}*uta (D
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where f; ft, ug, 7, v and m denote input continuous Fj at the
tth frame, modified Fy, V/UV parameter, the control parameter
for Fy shifting rate, that for the variation of the Fj and the
average of input continuous log Fp, respectively. Note that the
lower values of r and v are limited to 0.

B. BAP controller

BAP controller can control hoarseness of speech by chang-
ing the BAP vector b; according to the user instructions as
follows:

0 - min (b, (1 — ¢)b, + cby) ifo<e<1
"7 Ymax (by, (c— )b + (2 — c)by) elseif 1 < ¢,
(2)

where b;, b,, b; and ¢ denote the linear-scaled BAP whose
range is 0 (periodic) to 1 (aperiodic), the upper-value vector of
the BAP, the lower value vector of the BAP, and BAP control
parameter whose range is 0 to 2, respectively. We design this
system so that ¢ closer to 0 results in aperiodic speech, and ¢
closer to 2 results in periodic speech.

C. MGC controller

The MGC controller applies the frequency warping func-
tion [21], [25] to the MGC. In this system, we use pysptk! for
the frequency warping function, which is a Python wrapper of
SPTK.

III. EXPERIMENTS

To check whether modified vocoder parameters are con-
verted into their corresponding synthetic waveform using the
FIRNet, we have conducted an objective speaker similarity
test using the speaker similarity assessment model in the
analysis-synthesis task. In experiments, we employed English
male and female speakers in Hi-Fi-Captain corpus [26] for
training and evaluation of the FIRNet. For building the FIRNet
models, we resampled these waveforms from 48 kHz to 24
kHz. To accelerate inference speed, we set the hop size and
the number of filter coefficients to 240 and 384, respectively.
In this evaluation, focused on MGC modification using the
frequency warping function, we calculated speaker similarity
scores between synthetic waveforms of the FIRNet and those
of the WORLD synthesizer using VoxSim? [27]. This is
because the WORLD synthesizer is based on DSP and can
generate waveforms corresponding to the modified vocoder
parameters correctly. We set four warping parameters: -0.2,
-0.1, 0.0, 0.1, and 0.2.

Figure 2 shows the heatmap of the objective speaker simi-
larity scores. In the same warping parameters of the WORLD
synthesizer and the FIRNet, objective speaker similarity scores
are higher than other warping parameter conditions. This indi-
cates that the FIRNet can accurately reflect warping parameter
information in synthetic waveforms, just like the WORLD
synthesizer. Consequently, by applying FIRNet to neural wave-
form generation applications such as VC and TTS, they can

Thttps://github.com/r9y9/pysptk
Zhttps://huggingface.co/spaces/junseok520/VoxSIM

E 1.0

AN

¢ 9

=

=

= 0.8

-z -

{8 ¢

=4 B

5 0.6

Z o

G ©

]

% -04
-

g o

s

g 0.2

an ~

£ o

% . " " . . - 0.0

= -0.2 0.1 0.0 0.1 0.2

Warping parameter of FIRNet

Fig. 2. Heatmap of the objective speaker similarity scores. Note that higher
scores mean higher speaker similarities.
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Fig. 3. GUI for analysis-synthesis application.

achieve voice factor control abilities that are independent of
the training data.

IV. DEMONSTRATION APPLICATIONS

During the demonstration session, we will present two
types of voice factor control applications: analysis-synthesis
(AS) and neural text-to-speech (TTS). Each application can
run rapidly on the laptop PC. Their graphical user interfaces
(GUIs) are shown as Figs 3 and 4. These GUIs are designed to
allow even non-expert users to intuitively control voice factors.

A. Analysis-synthesis application

In the AS application, we directly utilize the FIRNet with
DSP-based voice factor controllers, as described in Sec II.
This application is an interactive demonstration and has five
steps: 1) users record their speech, 2) users check the recording
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Fig. 4. GUI for neural TTS application.

condition, 3) this system extracts vocoder parameters from
users’ recorded speech, 4) reconstructs users’ speech, and
5) users control voice factors (F shift and variation, depth
(MGC control), and hoarseness (BAP control)) through the
control panel and generate converted synthetic speech. In this
application, the real-time factors (RTFs) of speech analysis,
generations of re-synthetic speech and converted speech are
around 0.05, 0.085 and 0.09, respectively, on the single CPU
(Intel(R) Core(TM) i7-1255U 1.70 GHz).

B. Neural TTS application

In the neural TTS application, we combine the FIRNet with
the neural acoustic model as shown in Fig 5, which refers to
the acoustic model used in Mobile PresenTra [28], which is
one of the non-autoregressive models with monotonic align-
ment search [29]. This acoustic model utilizes a transformer-
based encoder and decoder based on the ConvNeXt archi-
tecture [30]. Unlike the acoustic model used in Mobile Pre-
senTra, this acoustic model outputs vocoder parameters, such
as MGC, continuous logFy, V/UV, and BAP, instead of mel-
spectrograms, and removes the pitch predictor and the energy
predictor. Additionally, this model introduces duration, Fy,
BAP, and MGC controllers, which modify their corresponding
vocoder parameters based on the respective control parameters.
The GUI of the neural TTS system comprises a text area, a
gender selector, and a voice factor control panel. Compared
to the AS application, users can also control duration through
the voice factor control panel. Users input text to synthesize,
select gender, and set each control parameter, and then they
can obtain desired synthetic waveforms freely. The RTF of this
application is around 0.12 (acoustic model: 0.02, parameter
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Fig. 5. Neural TTS structure used in the neural TTS application.

modification: 0.005 and FIRNet: 0.085) on the same single
CPU condition as Sec IV-A.

These applications highlight FIRNet’s value for real-time
and flexible voice factor control, with ethical responsibility.
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