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ABSTRACT

A recently proposed neural vocoder, Vocos, can perform inference

ten times faster than HiFi-GAN because of its use of ConvNeXt

layers that can predict high-resolution short-time Fourier transform

(STFT) spectra and an inverse STFT layer. To improve synthesis

quality while preserving inference speed, this paper proposes an al-

ternative ConvNeXt-based fast neural vocoder, WaveNeXt, in which

the inverse STFT layer in Vocos is replaced with a trainable lin-

ear layer that can directly predict speech waveform samples without

STFT spectra. Additionally, by integrating the JETS-based end-to-

end text-to-speech (E2E TTS) framework, E2E TTS models can also

be constructed with Vocos and WaveNeXt. Furthermore, full-band

models with a sampling frequency of 48 kHz were investigated. The

results of experiments for both the analysis–synthesis and E2E TTS

conditions demonstrate that the proposed WaveNeXt can achieve

higher quality synthesis than Vocos while preserving its inference

speed.

Index Terms— ConvNext, end-to-end text-to-speech, linear

layer-based upsampling, neural vocoder, Vocos

1. INTRODUCTION

Since the advent of WaveNet [1], many types of real-time neural-

network-based generative models for speech waveforms (neural

vocoders) have been proposed [2–8]. Although these models can

synthesize high-fidelity speech waveforms, a GPU is required to

achieve real-time inference. In contrast to these models, Mel-

GAN [9], Multi-band MelGAN [10], and HiFi-GAN [11], which

are based on a generative adversarial network (GAN) [12], can

achieve real-time inference with a single CPU because of their use

of gradual-upsampling-based generators.

In particular, HiFi-GAN can achieve high-quality synthesis and

is a de facto standard for neural vocoders. Therefore, HiFi-GAN is

widely used both for end-to-end text-to-speech (E2E TTS), to syn-

thesize speech waveforms directly from input text or phoneme se-

quences with a single neural network [13–17], and for various speech

and audio applications. These applications include end-to-end voice

conversion [18, 19], singing voice synthesis [20], speech enhance-

ment [21, 22], bandwidth extension [21], neural audio codec [23],

automatic spoken language acquisition [24], fundamental frequency

controllable neural vocoders [25,26], speech rate conversion [26,27],

and sound field reconstruction [28]. Additionally, extended mod-

els have also been investigated [29–32]. Despite the high inference

speed of HiFi-GAN, its real-time factor (RTF) is about 0.7 on a sin-

gle CPU [11]. If the duration of a speech waveform is 10 s, the

inference time is about 7 s, which is not suitable for real-time appli-

cations. Therefore, it is important to further accelerate the inference

speed of high-fidelity neural vocoders on a single CPU for practical

applications.

To accelerate the inference speed of HiFi-GAN while main-

taining its synthesis quality, Multi-stream (MS)-HiFi-GAN [33]

and iSTFTNet [34] have been proposed, in which the final 4× up-

sampling layers of HiFi-GAN are replaced with lightweight fast

upsampling layers. Additionally, by efficiently combining these

models, MS-iSTFT-HiFi-GAN [35] has been proposed as a VITS-

based E2E TTS model: this can perform inference four times faster

than VITS (with HiFi-GAN-based waveform synthesizer) [13] while

maintaining its synthesis quality. Both iSTFTNet and MS-iSTFT-

HiFi-GAN perform upsampling based on the inverse short-time

Fourier transform (iSTFT), using fixed weights based on the Fourier

basis. More recently, Fully connected (FC)-HiFi-GAN and MS-

FC-HiFi-GAN [36] have been proposed, in which this iSTFT-based

upsampling is replaced with simple linear-layer-based upsampling

using trainable weights without the overlap-add operation. By intro-

ducing the trainable upsampling and avoiding the overlap-add op-

eration, FC-HiFi-GAN and MS-FC-HiFi-GAN can achieve slightly

faster inference and higher synthesis quality for the E2E TTS condi-

tion, compared with iSTFTNet and MS-iSTFT-HiFi-GAN [36].

As an alternative to gradual-upsampling-based generators [11,

33–36], a GAN-based fast neural vocoder, Vocos, has recently been

proposed [37]. In Vocos, high-resolution STFT spectra are predicted

from input mel-spectrograms by ConvNeXt blocks [38] without up-

sampling, and the predicted high-resolution STFT spectra are con-

verted directly to speech waveforms by a final iSTFT layer. By in-

troducing the sophisticated ConvNeXt structure, Vocos can perform

inference ten times faster on a CPU and achieve higher objective

evaluation scores than HiFi-GAN in experiments using the VCTK

corpus [39]. Although Vocos can achieve faster inference than HiFi-

GAN-based models [11, 35, 36], the synthesis quality of Vocos is

lower than that of HiFi-GAN-based models, as demonstrated by the

results of experiments reported in Section 5.

To improve the synthesis quality of a ConvNeXt-based fast neu-

ral vocoder while preserving its inference speed, this paper proposes

an alternative ConvNeXt-based fast neural vocoder, WaveNeXt.

WaveNeXt replaces the iSTFT layer in Vocos with a trainable

linear layer that can directly predict speech waveform samples

without STFT spectra, similarly to FC-HiFi-GAN and MS-FC-

HiFi-GAN [36]. Additionally, by integrating the JETS-based E2E

TTS framework [16], E2E TTS models can also be constructed

with Vocos and WaveNeXt, similarly to HiFi-GAN. Furthermore,

full-band models with a sampling frequency fs of 48 kHz were

investigated. The results of experiments using the Hi-Fi-CAPTAIN

corpus [40] for both the analysis–synthesis and E2E TTS conditions

demonstrate that the proposed WaveNeXt can achieve higher quality

synthesis than Vocos while preserving its inference speed. Some

of the speech samples and the PyTorch [41] source code based on

ESPNet2-TTS [42] used in the experiments are available1.

1https://is.gd/duv0DF
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Fig. 1. Network architectures of generative adversarial network (GAN)-based neural vocoders with a sampling frequency of 24 kHz and a

shift length of acoustic feature analysis of 256 samples. (a) HiFi-GAN generator [11]. (b) MS-iSTFT-HiFi-GAN generator [35]. (c) MS-FC-

HiFi-GAN generator [36]. (d) Vocos generator [37]. (e) Proposed WaveNext generator. T is the number of frames of mel-spectrograms for the

analysis–synthesis condition or the number of hidden features for the end-to-end text-to-speech condition. MRF abbreviates multi-receptive

field fusion [11]. GELU abbreviates Gaussian error linear unit [43]. n is the number of ConvNeXt blocks.

2. HIFI-GAN-BASED FAST NEURAL VOCODERS

HiFi-GAN [11]: HiFi-GAN is a GAN-based high-fidelity and

fast neural vocoder consisting of a generator and two superior dis-

criminators. The generator synthesizes speech waveforms from

acoustic features with a shift length of 256 samples, such as

mel-spectrograms, by gradually upsampling the input features

(8× → 8× → 2× → 2×) using transposed convolutional lay-

ers with multi-receptive field fusion blocks, as shown in Fig. 1(a).

MS-HiFi-GAN [33]: Similarly to Multi-band MelGAN [10], HiFi-

GAN can easily be accelerated by replacing the final 4× upsampling

with a subband synthesis filter [44–47] based on multirate signal pro-

cessing [48], where the four subband output waveforms are upsam-

pled by zero-padding and then a full-band speech waveform is syn-

thesized. MS-HiFi-GAN replaces the subband synthesis filter, which

can be regarded as a convolutional layer with fixed weights without

bias, with a trainable convolutional layer without bias. It can be suc-

cessfully trained by decomposing the target waveform into the four

output waveforms in a data-driven manner.

iSTFTNet [34]: Similarly to the subband synthesis filter in Multi-

band MelGAN [10], iSTFT can be regarded as an upsampling oper-

ation. To accelerate HiFi-GAN, iSTFTNet replaces the last two lay-

ers for the final 4× upsampling of HiFi-GAN with iSTFT-based fast

upsampling. In iSTFTNet, the amplitude and phase components of

the STFT spectra are predicted by a one-dimensional convolutional

layer before the iSTFT layer.

MS-iSTFT-HiFi-GAN [35]: By combining a trainable convolu-

tional layer-based upsampling for MS-HiFi-GAN with iSTFT-based

upsampling for iSTFTNet, MS-iSTFT-HiFi-GAN has been proposed

to further accelerate HiFi-GAN-based neural vocoders. MS-iSTFT-

HiFi-GAN is used in the speech waveform synthesizer component

for VITS-based E2E TTS. The architecture of the MS-iSTFT-HiFi-

GAN generator is depicted in Fig. 1(b). Although MS-iSTFT-HiFi-

GAN is twice as fast as MS-HiFi-GAN and iSTFTNet, it can still

maintain the same synthesis quality.

FC-HiFi-GAN and MS-FC-HiFi-GAN [36]: With the success of

the trainable upsampling in MS-HiFi-GAN [33], FC-HiFi-GAN and

MS-FC-HiFi-GAN have been proposed. In these models, the iSTFT

layer-based upsampling in iSTFTNet and MS-iSTFT-HiFi-GAN is

replaced with a simple linear (fully connected) layer-based train-

able fast upsampling without the overlap-add operation. In the linear

layer-based upsampling, N× upsampling is performed simply by a

trainable linear layer with output channels of N and by reshaping

the output tensor shape from (B, N , T ) to (B, 1, NT ), where B

and T are the batch size and number of frames, respectively. The

linear layer-based upsampling is equivalent to sub-pixel convolution

(pixel-shuffler) based upsampling [49] with a 1 × 1 convolutional

layer. A trainable linear layer without bias is introduced [33]. By in-

troducing the trainable upsampling and avoiding the overlap-add op-

eration, FC-HiFi-GAN and MS-FC-HiFi-GAN can achieve slightly

faster inference and higher quality synthesis for the E2E TTS condi-

tion, compared with iSTFTNet and MS-iSTFT-HiFi-GAN [36].
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Fig. 2. (a) Magnitude and phase components of the STFT spectrum of a ground-truth female speech waveform. (b) Components estimated

by Vocos trained using the female corpus. (c) Components reanalyzed from the speech waveform synthesized by using (b).

3. VOCOS

In contrast to HiFi-GAN-based models, which have gradual up-

sampling based generators [11, 33–36], an alternative GAN-based

fast neural vocoder, Vocos, has recently been proposed [37]. In the

Vocos generator, high-resolution magnitude and phase components

of the STFT spectra are predicted from input mel-spectrograms by

ConvNeXt blocks [38] without upsampling, and the predicted high-

resolution STFT spectra are converted directly to speech waveforms

by a final iSTFT layer, as shown in Fig. 1(d). ConvNeXt blocks

were first proposed for image classification and have outperformed

Swin-Transformer [50]. They are constructed from layer normal-

ization layers [51], depthwise convolution layers [52], pointwise

convolution layers [53], and Gaussian error linear unit (GELU) acti-

vations [43], as shown in Fig. 1(d). By introducing the sophisticated

ConvNeXt structure, Vocos can directly predict high-resolution

magnitude and phase components of the STFT spectra, while per-

forming inference ten times faster on a CPU and achieving higher

objective evaluation scores than HiFi-GAN in experiments using the

VCTK corpus [39], even though predicting high-resolution STFT

spectra is a challenging problem [37]. In Vocos, to predict high-

resolution magnitude and phase components of the STFT spectra

by considering the phase wrapping in the desired range (−π, π],
the hidden features output from the linear layer are split into m

and p, and the magnitude and phase components are predicted

as M = exp(m) and ϕ = atan2(sin(p), cos(p)), respectively.

The complex STFT spectrum is then obtained as M · ejϕ, where

j =
√
−1. An inverse modified discrete cosine transform layer

has also been investigated, in addition to the iSTFT layer in Vo-

cos [37]. To train the Vocos generator, the multi-period discriminator

(MPD) used in HiFi-GAN [11] and the multi-resolution discrimina-

tor (MRD) used in UnivNet [30] are employed. The loss functions

of the generator and discriminators are then defined as

LG =ℓG,MPD + wMRDℓG,MRD

+ ℓFM,MPD + wMRDℓFM,MRD + wmelℓG,mel (1)

LD =ℓD,MPD + wMRDℓD,MRD, (2)

where ℓG,MPD, ℓG,MRD, ℓD,MPD, and ℓD,MRD are the adversar-

ial loss functions of the generator and discriminators for MPD and

MRD, ℓFM,MPD and ℓFM,MRD are the feature matching loss func-

tions for MPD and MRD, ℓG,mel is the mel-spectrogram L1 loss

between the ground-truth and synthesized speech waveforms, and

wMRD and wmel are the weighting coefficients of the loss functions

for MRD and mel-spectrogram L1 loss, respectively. The hinge loss

formulation [54] is used in Vocos [37].

4. PROPOSED METHOD: WAVENEXT

4.1. Is iSTFT layer-based upsampling really necessary for

GAN-based training in the time domain?

As explained in Section 1, although Vocos can achieve faster infer-

ence than HiFi-GAN-based models [11,35,36], the synthesis quality

of Vocos is lower than that of HiFi-GAN-based models, as demon-

strated by the results of the experiments reported in Section 5. To

explain the behavior of Vocos, Fig. 2 shows the magnitude and phase

components of the STFT spectrum of a ground-truth female speech

waveform, together with those estimated by Vocos trained using the

female corpus and those reanalyzed from the speech waveform syn-

thesized by using the estimated STFT spectrum. The estimated mag-

nitude component (Fig. 2(b)) is slightly degraded, compared with

that of the ground truth (Fig. 2(a)), and the estimated phase com-

ponent (Fig. 2(b)) differs from that of the ground truth (Fig. 2(a)).

These results indicate that Vocos cannot perfectly predict the mag-

nitude and phase components of the STFT spectra. However, the

reanalyzed magnitude and phase components (Fig. 2(c)) are indis-

tinguishable from those of the ground truth (Fig. 2(a)). This is be-

cause the estimated magnitude and phase components, which dif-

fer from those of the ground truth, can still synthesize high-fidelity

speech waveforms because of the redundancy of the overlap-add op-

eration and GAN-based training in the time domain. Conversely, Vo-

cos is trained to estimate STFT spectra for synthesizing high-quality

speech waveforms using the overlap-add operation, and GAN-based

training in the time domain has no restriction in the STFT domain.

Therefore, direct estimation of speech waveform samples in the time

domain is more suitable for GAN-based training in the time domain

than the indirect estimation of STFT spectra used in Vocos.

4.2. WaveNeXt

To predict speech waveform samples directly, without the use of

iSTFT layer-based upsampling, WaveNeXt, an alternative ConvNeXt-

based fast neural vocoder, is proposed. In WaveNeXt, the iSTFT
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layer in Vocos is replaced with a trainable linear layer without bias,

similarly to FC-HiFi-GAN and MS-FC-HiFi-GAN [36]. The pro-

posed WaveNeXt generator is depicted in Fig. 1(e). To adjust the

iSTFT layer in Vocos, the input and output channels of the final lin-

ear layer are set to lFFT and lshift, which are the FFT length and shift

length of acoustic feature analysis, respectively. As shown in Fig. 3,

the final linear layer in the proposed WaveNeXt generator directly

predicts speech waveform samples with a tensor size of lshift × T

and the reshaping component concatenates all the predicted speech

waveform pieces and finally synthesizes a speech waveform with

a length of 1 × lshiftT . The proposed WaveNeXt uses the same

discriminators and loss functions as those used in Vocos. Compared

with FC-HiFi-GAN and MS-FC-HiFi-GAN, which use linear lay-

ers for relatively small 4× upsampling, the large and direct 256×
upsampling using the final linear layer in the proposed WaveNeXt

is a challenging problem. However, because of the sophisticated

ConvNeXt layers and final trainable linear layer for direct speech

waveform sample prediction, the proposed WaveNeXt is expected to

achieve higher quality synthesis than Vocos with iSTFT layer-based

upsampling while maintaining the same inference speed.

4.3. JETS-based end-to-end text-to-speech models with Vocos

and WaveNeXt

Although HiFi-GAN-based models have been used for E2E TTS [13–

17], and high-fidelity and fast TTS can be performed [35, 36], Vo-

cos has only been investigated for the analysis–synthesis condition

with mel-spectrogram input [37]. To perform E2E TTS much faster

than HiFi-GAN-based models, E2E TTS models using Vocos and

WaveNeXt are additionally proposed in this subsection.

Compared with VITS [13], JETS is a simpler E2E TTS model

that achieves higher synthesis quality than VITS [16]. Therefore,

the JETS-based E2E TTS framework is integrated into Vocos and

WaveNeXt neural vocoders. JETS is implemented by joint training

of a FastSpeech 2 [55]-based acoustic model and a HiFi-GAN-based

neural vocoder using the same discriminators as those used for

HiFi-GAN, with neither intermediate mel-spectrograms nor external

aligners; however, FastSpeech 2 [55] requires an external aligner,

such as Montreal Forced Aligner [56]. In JETS, an alignment

training framework proposed in [57] with monotonic alignment

search (MAS) [58] is used, and the alignment between the hidden

features converted from the input text sequences and the target mel-

spectrogram sequences is gradually obtained in the training, in the

same manner as VITS. The JETS-based generator for E2E TTS
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Fig. 5. Generator loss values of Vocos and the proposed WaveNeXt

using the female corpus in the training for both the analysis–

synthesis and end-to-end text-to-speech conditions.

models is shown in Fig. 4. Although the loss functions for HiFi-

GAN-based models [36] are the same as those of JETS [16], the loss

functions of ConvNeXt-based models with Vocos and WaveNeXt

for the generator and discriminators are defined as follows:

LG,E2ETTS = LG + wvarℓvar + walignℓalign (3)

LD,E2ETTS = LD, (4)

where ℓvar and ℓalign are the variance loss and alignment loss used

in JETS [16], respectively, and wvar and walign are the weighting

coefficients for ℓvar and ℓalign, respectively.

4.4. Full-band end-to-end text-to-speech models with Vocos and

WaveNeXt

To further improve the synthesis quality, full-band E2E TTS models

with fs = 48 kHz, covering the human auditory frequency range,

were additionally investigated. In HiFi-GAN-based models, addi-

tional 2× upsampling layers were introduced, as in [36, 42]. In con-

trast, ConvNeXt-based models can easily perform full-band synthe-

sis by simply changing the FFT and shift lengths of the STFT calcu-

lation. In contrast to HiFi-GAN-based models, the inference speed

of ConvNeXt-based models is almost the same as that with a sam-

pling frequency of 48 kHz. Therefore, very fast full-band E2E TTS

can be achieved by Vocos and WaveNeXt neural vocoders.



Table 1. Results of objective evaluations for the analysis–synthesis and JETS-based E2E TTS conditions using the Hi-Fi-CAPTAIN corpus.

The values in the mel-cepstral distortion (MCD) and log fo root-mean-square error (RMSE) columns represent the means and standard

deviations. fs, CER, and RTF are the sampling frequency, character error rate of automatic speech recognition, and real-time factor on an

AMD EPYC 7542 CPU (1 core) using PyTorch 1.13.1. The RTF of FastSpeech 2-based acoustic model in JETS-based E2E TTS is 0.05.
Female (fs = 24 kHz) Male (fs = 24 kHz)

Condition Neural vocoder RTF MCD [dB] logfo RMSE CER [%] MCD [dB] logfo RMSE CER [%]

Analysis-synthesis HiFi-GAN V1 [11] 0.92 2.21 ± 0.09 0.16 ± 0.06 1.7 2.00 ± 0.10 0.12 ± 0.06 2.0

HiFi-GAN V2 [11] 0.10 2.65 ± 0.10 0.18 ± 0.08 2.1 2.65 ± 0.09 0.13 ± 0.04 2.2

MS-iSTFT-HiFi-GAN [35] 0.19 2.07 ± 0.10 0.15 ± 0.07 1.7 2.01 ± 0.09 0.13 ± 0.05 1.7

MS-FC-HiFi-GAN [36] 0.18 2.02 ± 0.09 0.16 ± 0.08 1.9 1.90 ± 0.08 0.14 ± 0.06 2.0

Vocos [37] 0.10 2.74 ± 0.11 0.16 ± 0.07 2.0 3.05 ± 1.16 0.14 ± 0.06 2.4

WaveNeXt 0.10 2.86 ± 0.12 0.17 ± 0.07 1.6 4.32 ± 0.33 0.13 ± 0.05 2.0

JETS-based E2E TTS HiFi-GAN V1 [16] 0.97 5.77 ± 0.61 0.23 ± 0.07 2.0 4.88 ± 0.06 0.19 ± 0.05 1.7

HiFi-GAN V2 0.15 5.63 ± 0.47 0.22 ± 0.08 2.1 4.97 ± 0.68 0.20 ± 0.05 2.1

MS-iSTFT-HiFi-GAN [36] 0.24 5.66 ± 0.57 0.22 ± 0.09 1.5 4.68 ± 0.58 0.20 ± 0.06 2.0

MS-FC-HiFi-GAN [36] 0.23 5.44 ± 0.47 0.22 ± 0.07 1.7 4.79 ± 0.68 0.21 ± 0.06 2.0

Vocos 0.15 5.49 ± 0.63 0.22 ± 0.08 2.1 4.77 ± 0.62 0.20 ± 0.06 2.5

WaveNeXt 0.15 5.36 ± 0.49 0.21 ± 0.07 2.0 4.74 ± 0.50 0.18 ± 0.05 1.7

Ground truth N/A N/A N/A 1.7 N/A N/A 1.9
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Fig. 6. Results of MOS tests for the analysis–synthesis and JETS-based end-to-end text-to-speech conditions with 20 listening subjects. The

confidence level is 95%. The blue asterisks and connecting line indicate the significant differences between two models in the T-test.

5. EXPERIMENTS

To compare the proposed WaveNeXt with Vocos [37] and HiFi-

GAN-based models [11, 35, 36], experiments were conducted for

both the analysis–synthesis condition with fs = 24 kHz and the

E2E TTS conditions with fs = 24 kHz and 48 kHz. All the neural

network models were implemented using PyTorch [41] and trained

on an NVIDIA Tesla A100 GPU with 40 GB of memory.

5.1. Experimental conditions

Dataset: The experiments were conducted using Japanese single-

speaker speech corpora of female and male professional speakers

from the Hi-Fi-CAPTAIN corpus [40]. Each corpus contained

18,662 utterances (about 20 hours), all of which were parallel be-

tween the female and male corpora. The training, validation, and

test sets contained 18,372, 250, and 40 utterances, respectively. The

input acoustic features were 80-dimensional mel-spectrograms ban-

dlimited to 7600 Hz. The FFT and shift lengths for fs = 24 kHz

were 1,024 and 256 samples, and those for fs = 48 kHz were 2,048

and 512 samples, respectively.

Model setting: In the experiments, all the models were trained

and inferred by modifying a JETS-based E2E TTS model imple-

mented using ESPnet2-TTS [42] (https://is.gd/vbqxeB).

For the analysis–synthesis condition, the FastSpeech 2-based acous-

tic model and MAS in JETS were omitted, and mel-spectrogram

sequences were directly input to the neural vocoder models. Each

model was trained for up to 1 million iterations. For fs = 24 kHz

(Fig. 1), the upsampling rates and kernel sizes of the transposed con-

volutional layers for HiFi-GAN were [8, 8, 2, 2] and [16, 16, 4, 4],

and those for MS-iSTFT-HiFi-GAN and MS-FC-HiFi-GAN were

[4, 4] and [8, 8], respectively. For fs = 48 kHz, the upsampling

rates and kernel sizes for HiFi-GAN were [8, 8, 2, 2, 2] and [16, 16,

4, 4, 4], and those for MS-iSTFT-HiFi-GAN and MS-FC-HiFi-GAN

were [4, 4, 2] and [8, 8, 4], respectively. Both HiFi-GAN V1 with



Table 2. Results of objective evaluations for the full-band JETS-

based end-to-end text-to-speech condition. The RTF of the Fast-

Speech 2-based acoustic model is 0.05.
Female (fs = 48 kHz)

Neural vocoder RTF MCD [dB] logfo RMSE CER [%]

HiFi-GAN V1 1.08 5.08 ± 0.34 0.23 ± 0.09 1.7

HiFi-GAN V2 0.17 5.01 ± 0.37 0.24 ± 0.08 2.4

MS-iSTFT-HiFi-GAN 0.31 5.37 ± 0.49 0.25 ± 0.07 2.0

MS-FC-HiFi-GAN 0.30 4.97 ± 0.35 0.24 ± 0.08 2.1

Vocos 0.16 5.87 ± 0.40 0.33 ± 0.15 1.7

WaveNeXt 0.16 4.96 ± 0.33 0.25 ± 0.10 1.7

Ground truth N/A N/A N/A 1.6

an initial channel of 512 (high-fidelity model) and HiFi-GAN V2

with an initial channel of 128 (fast model) were evaluated [11].

The Harvest algorithm [59] was used for fundamental frequency

fo analysis instead of the Dio and Stonemask algorithms [60]. For

E2E TTS in Japanese, the G2P function, based on pyopenjtalk

enhanced with prosody symbols [61], was used [42]. The model

configurations of JETS with HiFi-GAN V1 used the default settings

(https://is.gd/a5UHnP) with only the sampling frequency

changed from 22,050 Hz to 24 kHz. The model configurations of

MS-iSTFT-HiFi-GAN and MS-FC-HiFi-GAN were modified from

the default settings. The Vocos neural vocoder and JETS-based

E2E TTS with Vocos were implemented by integrating an official

implementation of Vocos2 into ESPnet2-TTS. All the model config-

urations were the same as that of the official implementation, where

n = 8 in Fig. 1(d), and wMRD and wmel in (1) and (2) and wvar

and walign in (3) were 0.1, 45.0, 1.0, and 2.0, respectively. The

proposed WaveNeXt neural vocoder and JETS-based E2E TTS with

WaveNeXt were implemented by simply replacing the iSTFT layer

in Vocos with a linear layer, as shown in Fig. 1(e).

Evaluation criteria: The mel-cepstral distortion (MCD), log fo
root-mean-square error (RMSE), and the character error rate (CER)

of automatic speech recognition (ASR) were used as the objective

evaluation criteria, as in [16, 42]. The MCD and log fo RMSE

were calculated by the ESPnet2-TTS toolkit [16, 42]. The CER was

calculated by a Conformer-based ASR system, trained using the CSJ

corpus [62] by ESPnet2 [63]. The RTFs of all the inference models

were measured on an AMD EPYC 7542 CPU (1 core). To evaluate

the synthesized speech subjectively, mean opinion score (MOS)

tests [64] were conducted. Each subject evaluated 310 samples (ten

utterances × 31 conditions) and rated the naturalness of each sample

on a five-point scale. Twenty adult Japanese native speakers without

hearing loss participated using headphones.

5.2. Results of experiments

To compare the characteristics of the Vocos and WaveNeXt genera-

tors, the generator loss values of these models, including E2E TTS

models trained using the female corpus, are plotted in Fig. 5. Al-

though the loss values of the Vocos-based models converged quickly,

those of the WaveNeXt-based models converged more gradually and

finally became slightly lower than those of the Vocos-based mod-

els. These results indicate that the proposed WaveNeXt generator is

superior to the Vocos generator, provided that sufficient training is

performed.

Table 1 and Fig. 6 show the results of the objective and subjec-

tive evaluations for fs = 24 kHz, respectively. HiFi-GAN V2 was

2https://github.com/charactr-platform/vocos
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Fig. 7. Results of MOS tests for full-band end-to-end text-to-speech

condition with 20 listening subjects. The confidence level is 95%.

not included in the MOS tests for the E2E TTS condition because

it was unable to outperform WaveNeXt for the analysis–synthesis

condition. The proposed WaveNeXt achieved high inference speed,

comparable to that of HiFi-GAN V2 and Vocos, and higher than

that of the other models. Although WaveNeXt underperformed

Vocos with respect to MCD for the analysis–synthesis condition,

WaveNeXt outperformed Vocos with respect to the other objective

evaluation criteria. Importantly, WaveNeXt outperformed Vocos

with respect to synthesis quality for all the conditions (Fig. 6).

In particular, WaveNeXt outperformed the other models for the

analysis–synthesis condition with the male corpus (Fig. 6(b)) and

the E2E TTS condition with the female corpus (Fig. 6(c)), while

achieving the fastest inference. Table 2 and Fig. 7 show the re-

sults of the objective and subjective evaluations, respectively, for

the full-band E2E TTS condition trained using the female corpus

with fs = 48 kHz. MS-iSTFT-HiFi-GAN was not included in

the MOS tests because it could not be trained successfully and an

aliasing component appeared around 3 kHz in all the synthesized

waveforms. Vocos and WaveNeXt achieved faster full-band E2E

TTS than the other models, and WaveNeXt outperformed the other

models with respect to MCD and CER. Although WaveNeXt un-

derperformed HiFi-GAN and MS-FC-HiFi-GAN with respect to

synthesis quality, it significantly outperformed Vocos (Fig. 7).

These results indicate that the trainable linear layer, which can

directly predict speech waveform samples, introduced in the pro-

posed WaveNeXt is more suitable for GAN-based training in the

time domain than the iSTFT layer used in Vocos. Consequently,

replacing the iSTFT layer in Vocos with the trainable linear layer

enables WaveNeXt to achieve higher synthesis quality than Vocos

while preserving its inference speed. Although WaveNeXt outper-

formed Vocos, it underperformed HiFi-GAN-based models for some

conditions, particularly the full-band E2E TTS condition. Therefore,

future work includes improving the synthesis quality of WaveNeXt

by introducing extended neural network models [65, 66].

6. CONCLUSION

This paper proposed an alternative ConvNeXt-based fast neural

vocoder, WaveNeXt, in which the iSTFT layer in Vocos is replaced

with a trainable linear layer that can directly predict speech wave-

form samples without STFT spectra. Additionally, JETS-based E2E

TTS models can also be constructed with Vocos and WaveNeXt.

Furthermore, full-band models with fs = 48 kHz were investi-

gated. The results of experiments for both the analysis–synthesis

and E2E TTS conditions demonstrate that the proposed WaveNeXt

can achieve higher quality synthesis than Vocos while preserving

its inference speed. These results indicate that the sophisticated

ConvNeXt component is important for fast neural vocoding and the

iSTFT operation is not necessarily required.
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