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ABSTRACT

Although a HiFi-GAN vocoder can synthesize high-fidelity speech
waveforms in real time on CPUs, there is a tradeoff between synthe-
sis quality and inference speed. To increase inference speed while
maintaining synthesis quality, a multi-band structure is introduced
to HiFi-GAN. However, it cannot be trained well because of the
strong constraint imposed by the fixed multi-band structure. As
an alternative approach, Multi-stream MelGAN and HiFi-GAN are
proposed, in which the fixed synthesis filter in Multi-band MelGAN
is replaced by a trainable convolutional layer with the same struc-
ture. In contrast to Multi-band MelGAN, the proposed methods use
the trainable synthesis filter to decompose speech waveforms in a
data-driven manner. To evaluate the proposed Multi-stream HiFi-
GAN as an entire real-time neural text-to-speech system on CPUs,
a fast acoustic model, based on Parallel Tacotron 2 with forced
alignment and accentual label input, was implemented. The results
of experiments—using Japanese male, female, and multi-speaker
corpora—indicate that Multi-stream HiFi-GAN can increase syn-
thesis speed while improving or maintaining synthesis quality in
analysis—synthesis and text-to-speech conditions for single-speaker
models and unseen speaker synthesis for multi-speaker models,
compared with the original HiFi-GAN.

Index Terms— Speech synthesis, neural vocoder, HiFi-GAN,
data-driven waveform decomposition, Parallel Tacotron 2

1. INTRODUCTION

Recent advances in neural speech synthesis have made it possible
to synthesize high-fidelity speech waveforms with the same quality
as natural human speech, using Tacotron 2 [1] combined with the
autoregressive WaveNet-based [2] neural vocoder [3]. Additionally,
entire end-to-end text-to-speech (TTS) models, which can directly
synthesize speech waveforms from character or phoneme sequences
with a single neural network, have also been investigated, such as
EATS [4], FastSpeech 2+ [5], Wave-Tacotron [6], VITS [7], and
Reinforce-Aligner [8].

To realize high-fidelity and real-time neural speech synthe-
sis, many types of real-time neural vocoders, based on both au-
toregressive and non-autoregressive structures, have been investi-
gated. Compared with real-time autoregressive models, such as
WaveRNN [9], LPCNet [10], DurlAN [11], FeatherWave [12],
Subband-LPCNet [13], Fullband-LPCNet [14], and MWDLP [15],
non-autoregressive models, which can simultaneously synthesize
all waveform samples, can be more easily implemented, and many
models have been proposed. Non-autoregressive models are broadly
classified into the following three types. The first type comprises
flow-based approaches [16], such as Parallel WaveNet [17, 18] and
WaveGlow [19]. The second type comprises generative adversarial

network (GAN)-based models [20], such as WaveGAN [21], Mel-
GAN [22], Parallel WaveGAN [23], GAN-TTS [24], VocGAN [25],
HiFi-GAN [26], Multi-band MelGAN [27], Quasi-Periodic Paral-
lel WaveGAN [28], Fre-GAN [29], Glow-WaveGAN [30], Uni-
vNet [31], and Basis-MelGAN [32]. The final type comprises dif-
fusion probabilistic-based models [33], such as WaveGrad [34-36]
and DiffWave [35,37]. Although these models can synthesize high-
fidelity speech waveforms, most of them require a GPU for real-time
inference. However, for actual implementations, the development of
real-time neural vocoders on CPUs is important.

MelGAN and HiFi-GAN are GAN-based non-autoregressive
neural vocoders that can realize real-time inference on CPUs. In
particular, HiFi-GAN can realize higher-fidelity synthesis than Mel-
GAN, using sophisticated generator and discriminators. To further
improve the synthesis quality, Fre-GAN, with modified genera-
tor and discriminators [29], was recently proposed. Additionally,
VITS [7], a HiFi-GAN-based end-to-end neural TTS combined
with Glow-TTS [38], was recently proposed. However, there is a
tradeoff between the synthesis quality and inference speed in HiFi-
GAN. To increase the inference speed and improve the synthesis
quality of MelGAN, Multi-band MelGAN was proposed [27], in
which multi-band waveforms are synthesized by a MelGAN gener-
ator and integrated to a fullband waveform, using multi-rate signal
processing [39] instead of neural-network-based upsampling.

To increase the inference speed of HiFi-GAN while maintaining
the synthesis quality, we first simply introduce a multi-band structure
into HiFi-GAN, as Multi-band MelGAN [27]. However, this cannot
be trained well because of the strong constraint imposed by the fixed
multi-band structure. As a simple but effective alternative approach,
we then propose Multi-stream MelGAN and HiFi-GAN. The fixed
synthesis filter in Multi-band MelGAN is realized by a mixture of
FIR filters, which is equivalent to a layer of a convolutional neural
network (CNN). In the proposed methods, the fixed synthesis filter in
Multi-band MelGAN is replaced by a trainable CNN layer without
bias. In contrast to Multi-band MelGAN, the MelGAN and HiFi-
GAN generators in the proposed methods use the trainable synthesis
filter to synthesize multi-stream waveforms decomposed in a data-
driven manner, to optimally synthesize the final output waveforms.
By introducing the proposed trainable filter, both Multi-stream Mel-
GAN and HiFi-GAN can be trained well using the same discrimina-
tors and loss functions as used for the original Multi-band MelGAN
and HiFi-GAN without multi-band waveforms.

A similar approach, Basis-MelGAN [32], was recently pro-
posed, in which speech waveforms are decomposed with a trainable
basis and their associated weights by Conv-TasNet [40], and the as-
sociated weights are predicted by inference, to simplify the upsam-
pling layers. As a result, the inference speed can be increased while
realizing high-fidelity synthesis. Compared with Basis-MelGAN,
the proposed methods are much simpler and no pre-training of Conv-
TasNet is required. An alternative GAN-based vocoder, UnivNet,
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Fig. 1. (A) HiFi-GAN generator network and three types of upsampling layers: (a) transposed convolution used in the original HiFi-GAN [26],
(b) interpolation and convolution, and (c) sub-pixel convolution. k., [, and h,, are the kernel size, number of upsampling layers, and number

of hidden channels, respectively.

was also recently proposed, which can realize higher-quality and
faster synthesis than HiFi-GAN [31]. However, only its inference
speed on a GPU was measured; speed on CPUs was not investigated.

To evaluate the proposed Multi-stream HiFi-GAN as an entire
real-time neural TTS system on CPUs, a non-autoregressive fast
acoustic model—based on Parallel Tacotron 2 [41] with forced align-
ment and accentual label input—was implemented. This is also im-
portant because HiFi-GAN was only evaluated with autoregressive
Tacotron 2 [1] in [26]. The results of experiments, reported in Sec-
tion 5, indicate that Multi-stream HiFi-GAN can increase the synthe-
sis speed while improving or maintaining the synthesis quality in the
analysis—synthesis and TTS conditions (for single-speaker models)
and unseen speaker synthesis (for multi-speaker models), compared
with the original HiFi-GAN.

2. HIFI-GAN AND MULTI-BAND MELGAN VOCODERS

2.1. HiFi-GAN

As depicted in Fig. 1(A), HiFi-GAN [26] converts input mel-
spectrograms to speech waveforms with multiple upsampling layers,
without white noise input. HiFi-GAN uses a multi-period discrimi-
nator for modeling periodic patterns and a multi-scale discriminator
for capturing consecutive patterns and long-term dependencies, in
the same manner as MelGAN [22]. As a consequence of the so-
phisticated generator and discriminators, HiFi-GAN can synthesize
high-fidelity speech waveforms in real time on CPUs. In a large
model as HiFi-GAN V1, the initial number of hidden channels h.,
is 512 and the kernel sizes of the transposed convolution layers
(Fig. 1(a)) are k, = [16, 16, 4, 4]. For a small model as HiFi-GAN
V2, h,, is 128 and the other parameters are the same as those of HiFi-
GAN V1. Although HiFi-GAN V2 realizes high-quality synthesis
with fast inference on CPUs [26], the synthesis quality of HiFi-GAN
V2 is lower than that of HiFi-GAN V1, and there is a tradeoff be-
tween the synthesis quality and inference speed, according to the
results of experiments reported in Section 5.

2.2. Investigation of upsampling layers in HiFi-GAN

In [42], three types of upsampling layers for neural audio syn-
thesis were introduced and compared. In contrast to the original
HiFi-GAN, which uses transposed convolution layers (Fig. 1(a)) for

upsampling, this paper investigates interpolation-based upsampling
layers [43] (Fig. 1(b)), as used in [44], and sub-pixel convolution
(pixel shuffler) layers [45], as used in [46,47]. These upsamplers
are compared with transposed convolution layers (Fig. 1(a)), with
respect to synthesis accuracy and inference speed, in Section 5.

2.3. Multi-band Mel GAN

To increase the inference speed and improve the synthesis quality
of MelGAN [22], Multi-band MelGAN [27] was proposed [27],
in which four subband waveforms are synthesized by a MelGAN
generator and integrated to a fullband waveform by a synthesis filter
bank based on multi-rate signal processing [39]", instead of neural-
network-based upsampling (Fig. 2(a)). In Multi-band MelGAN,
Pseudo-Quadrature Mirror Filter Bank [51] is used to calculate the
analysis and synthesis filter banks [11-13,15]. In the training, sub-
band waveforms are calculated from target fullband waveforms by
the analysis filter bank and decimation-based downsampling, and
both the fullband and subband STFT losses are used to update model
parameters. Because zero-padding-based upsampling with a synthe-
sis filter bank is much faster than neural-network-based upsampling,
but still effective, Multi-band MelGAN can realize high-fidelity
synthesis faster than the original MelGAN [27].

2.4. Investigation of Multi-band HiFi-GAN

Following the success of Multi-band MelGAN, a multi-band struc-
ture was first applied to HiFi-GAN to increase the inference speed
while maintaining the synthesis quality. In Multi-band HiFi-GAN,
k. in the HiFi-GAN V1 generator is [16, 16] and the number of out-
put channels in the final CNN is 4. Four subband waveforms are
synthesized by the HiFi-GAN generator and integrated to a fullband
waveform by zero-padding-based upsampling with a synthesis filter,
as in Multi-band MelGAN, in which the length of the synthesis filter
bank is 63 [11,27]. However, in preliminary experiments, it could
not be trained well, despite the use of pre-training using both the
fullband and subband STFT losses, as in Multi-band MelGAN. The
quality of speech synthesized by Multi-band HiFi-GAN was lower
than that of speech synthesized by the HiFi-GAN V2 and V3 mod-
els [26]. This may be because the constraint imposed by the fixed

Multi-rate signal processing was first introduced to autoregressive neural
vocoders by the authors, as Subband WaveNet and FFTNet [48-50].
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Fig. 2. (a) Multi-band MelGAN generator network and (b) proposed Multi-stream MelGAN generator network.

multi-band structure is too strong for HiFi-GAN, and the sophisti-
cated HiFi-GAN discriminators can easily distinguish between real
and synthetic speech.

3. MULTI-STREAM MELGAN AND HIFI-GAN

3.1. Multi-stream MelGAN

This subsection describes the proposed Multi-stream MelGAN, to
ease the understanding of Multi-stream HiFi-GAN, which is intro-
duced in the next subsection. The fixed synthesis filter bank in
Multi-band MelGAN is realized by a mixture of FIR filters, which
is equivalent to a CNN layer in a neural network. In Multi-stream
MelGAN, the fixed synthesis filter in Multi-band MelGAN is sim-
ply replaced by a trainable CNN layer without bias, with the same
number of channels as the fixed synthesis filter (Fig. 2(b)). The
Multi-stream MelGAN generator can also be successfully trained
with only the fullband STFT losses, without subband waveforms.
Because the only difference between Multi-stream MelGAN and
Multi-band MelGAN is the trainability of the final CNN layer, their
inference speeds are the same. Therefore, Multi-stream MelGAN is
simpler than Multi-band MelGAN because no analysis or synthesis
filter banks are required. A similar approach, in which fixed frontend
filters are replaced by trainable filters, was also recently investigated
for audio classification [52].

3.2. Multi-stream HiFi-GAN

The proposed Multi-stream HiFi-GAN (Fig. 3) is described in this
subsection. Because of the higher inference speed, Multi-stream
HiFi-GAN introduces sub-pixel CNN layers for upsampling. As in
Multi-stream MelGAN, the final fourfold upsampling is realized by
zero-padding-based upsampling with a trainable CNN layer with-
out bias. Compared with Multi-band HiFi-GAN, which cannot be
trained well (as explained in Section 2.4), Multi-stream HiFi-GAN
can be successfully trained with the same discriminators and loss
functions as the original HiFi-GAN. This is because the final CNN
layer is trainable without constraint and it can also be optimally and
jointly trained with the HiFi-GAN generator network, which outputs
four-stream waveforms.

In contrast to Multi-band MelGAN, the MelGAN and HiFi-
GAN generators in the proposed methods synthesize four-stream
waveforms decomposed in a data-driven manner by the trainable
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Fig. 3. Proposed Multi-stream HiFi-GAN generator network.

CNN layer, to optimally synthesize the final output speech wave-
forms. Therefore, Multi-stream HiFi-GAN is expected to increase
the inference speed while maintaining the synthesis quality.

4. FAST ACOUSTIC MODEL BASED ON PARALLEL
TACOTRON 2 WITH FORCED ALIGNMENT

To evaluate the proposed Multi-stream HiFi-GAN vocoder as an
entire real-time neural TTS system on CPUs, a non-autoregressive
fast acoustic model, based on Parallel Tacotron 2 [41], was de-
signed. Parallel Tacotron 2 is a state-of-the-art non-autoregressive
acoustic model for multi-speaker neural TTS; it is an extension of
Parallel Tacotron [53] using lightweight convolutions (LConv) [54].
Although Parallel Tacotron requires phoneme alignment, obtained
from an external model, Parallel Tacotron 2 introduced a trainable
upsampling layer and soft-DTW [55] to jointly optimize output mel-
spectrograms and phoneme alignment without forced alignment.
Although phoneme alignment could be successfully trained in
single-speaker Parallel Tacotron 2 with soft-DTW? by using single-
speaker corpora, as explained in Section 5, output mel-spectrograms

Zhttps://github.com/Maghoumi/pytorch-softdtw-cuda
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Fig. 4. Single-speaker Parallel Tacotron 2 with forced alignment and
accentual label input for pitch accent languages.

were degraded and high-fidelity synthesis could not be realized®.
Therefore, in this study, forced alignment—calculated by Montreal
Forced Aligner [56], as used in FastSpeech 2 [S]—was performed,
and single-speaker Parallel Tacotron 2 with forced alignment was
implemented, as shown in Fig. 4. In this model, both phoneme se-
quences and accentual label sequences are input to the network for
pitch accent languages [57-59]. The decoder shown in Fig. 4 is also
constructed from six LConv blocks (17 x 1) and each block out-
puts mel-spectrograms to calculate the L losses, in the same man-
ner as [41,53]. Although the number of channels used in the net-
work was not described for either Parallel Tacotron [53] or Parallel
Tacotron 2 [41], it was set to 512 in this study. However, the results
of preliminary experiments suggested that it is better to introduce
1,024 channels in the decoder. Therefore, to increase the number of
channels, an additional projection layer was introduced between the
trainable upsampling layer and the decoder. Eight attention heads
are used in all the feedforward Transformer and LConv blocks. The
loss function for training is defined as:

6
1 1
£ - 6[(7,1., ;:1 Cspeci + N)\Cdury (1)

where Lpec, is the L1 mel-spectrogram loss for the i-th LConv block

3Compared to the original model with 405 hours of multi-speaker speech
data and a batch size of 2,048 [41], only about 20 hours of single-speaker
speech data and a batch size of 128 were used in preliminary experiments.
Additionally, there are some hyperparameters, such as the warp penalty in
soft-DTW and the weight coefficients of loss functions. Therefore, further
work is required to successfully train Parallel Tacotron 2 with soft-DTW.

output, Lqyr is the L; duration loss, A is the weight coefficient, K
is the size of the mel-spectrogram, 7" is the number of frames, and
N is the number of phonemes. In this study, K and \ were set
to 80 and 1, respectively. In contrast to the model trained with soft-
DTW, the model with forced alignment using the loss function £ was
successfully trained and high-fidelity synthesis could be achieved.

5. EXPERIMENTS

5.1. Experimental conditions

Experiments were conducted to evaluate the proposed Multi-stream
MelGAN and HiFi-GAN and compare them with Multi-band Mel-
GAN and the original HiFi-GAN. All the neural network models
were implemented by PyTorch and trained using NVIDIA Tesla
V100 GPUs. Both the analysis—synthesis and TTS conditions
were evaluated for single-speaker models. Additionally, analysis—
synthesis with unseen speaker features was evaluated for multi-
speaker models, as in [26].

Speech corpora:

The experiments were conducted with Japanese female and male
speech corpora of professional speakers (JAFOO1 and JAMO17)
for single-speaker models, and the JVS corpus [60] for multi-
speaker models, with a sampling frequency of 24 kHz. The JAF001,
JAMO17, and JVS corpora included 19,644 (21.8 hours), 19,584
(20.7 hours), and 12,737 (25.7 hours; JVS001 and JVS004 were not
included as the validation set) utterances, respectively, for the train-
ing set*. One hundred utterances from each of JAF001 and JAMO17
were used for the test set. Because the JAFOO1 and JAMO17 speak-
ers were not included in the JVS corpus, unseen speaker synthesis
could be evaluated for multi-speaker models and compared with
single-speaker models. As in [26], band-limited 80-dimensional
mel-spectrograms were analyzed. The FFT, window, and hop sizes
were 1024, 1024, and 256, respectively. These were used in all the
neural vocoders and acoustic models for TTS.

Multi-band and Multi-stream MelGAN vocoders:

Multi-band MelGAN used the network structures (of the gener-
ator and discriminator) and training condition reported in [27]. Both
the fullband and subband STFT losses were used for the genera-
tor. In Multi-stream MelGAN, the fixed synthesis filter of Multi-
band MelGAN was replaced by a trainable CNN layer without bias
(Fig. 2(b)), and only the fullband STFT losse was used for the gener-
ator. These models were implemented by using an unofficial imple-
mentation® with simple modifications, and the Adam optimizer [61]
was used to update parameters. The number of parameter updates
was 2M.

HiFi-GAN and Multi-stream HiFi-GAN vocoders:

As the baselines, the original HiFi-GAN V1 (a) and V2 (a)
models from [26], with transposed convolution-based upsampling
(Fig. 1(a)), were introduced; the upsampling rates were [8, 8,2, 2].
As described in Section 2.2, to compare the upsampling methods,
the HiFi-GAN V1 (b) model with interpolation-based upsampling
(Fig. 1(b))—with CNN kernel sizes of [15, 15, 3, 3]—and the HiFi-
GAN V1 (c) and V2 (c) models with sub-pixel convolution-based
upsampling (Fig. 1(c)) were also investigated. In Multi-stream HiFi-
GAN, the upsampling rates of the HiFi-GAN network were |8, 8]
and the final fourfold upsampling was realized by zero-padding-
based upsampling and a trainable CNN layer without bias (Fig. 3).

4Japanese speech corpora JAF001 and JAMO17 will be released by NICT
for open innovation in speech synthesis research. Therefore, all the corpora
used in the experiments will be available.

Shttps://github.com/kan-bayashi/ParallelWave GAN



Table 1. Number of model parameters (#param) and real-time factor
(RTF) in inference using an NVIDIA Tesla V100 GPU and Intel
Xeon 6152 CPU with 16 cores. “MS” is Multi-stream. (a), (b), and
(c) are the types of upsampling layers depicted in Fig. 1.

Model [ #param [ RTF (1GPU) [ RTF (CPU)
MS MelGAN [27] 2.54M 0.0033 0.034
HiFi-GAN V1 (a) [26] | 13.9M 0.011 0.095
HiFi-GAN V2 (a) [26] | 0.93M 0.0079 0.050
HiFi-GAN V1 (b) 13.8M 0.013 0.094
HiFi-GAN V1 (¢) 15.3M 0.011 0.084
HiFi-GAN V2 (¢) 1.0IM 0.0082 0.049
MS HiFi-GAN 14.6M 0.0067 0.050
Sub-DiffWave [35] [ 14.3M [ 0.31 [ 10.25
Transformer 53.0M 0.55 3.2
Parallel Tacotron 2 99.7M 0.0044 0.020

The kernel size in the sub-pixel convolution layers was 3, as in [42].
The other parameters and discriminators were the same as in the
original HiFi-GAN V1 (a) and V2 (a), for all the models. All the
models were implemented by an official implementation® with sim-
ple modifications, and the AdamW optimizer [62], with the same
learning rate and schedule as in [26], was used. The number of
parameter updates was 1M. No fine-tuning with mel-spectrograms
predicted by Parallel Tacotron 2 was performed for any of the mod-
els. In all the MelGAN-based and HiFi-GAN-based models, the
batch size and batch length were 16 and 8,192, respectively.
DiffWave vocoder with noise-level-limited sub-modeling

To compare MelGAN-based and HiFi-GAN-based models
with other non-autoregressive neural vocoders, DiffWave [37]—
conditioned on continuous noise level, as in WaveGrad [34] with
noise-level-limited sub-modeling [35]—was used. As in [34, 35],
the noise schedule for inference was Fibonacci-based 25 iterations.
To efficiently use all 10 sub-models, the noise level range for train-
ing with a logarithmic scale was divided into 10 equal parts for
the 10 sub-models, although only six sub-models were used for
Fibonacci-based 25 iterations in the previous division criterion, with
a linear scale [35]. The network structure and training condition
were the same as those of [35], and only the upsampling rates in the
acoustic feature conditioning network were changed, from [30, 10]
to [16,16]. The spectral enhancement postfilter used in [35] was
not used in the experiments. The DiffWave model was implemented
using an unofficial implementation’ with some modifications for
continuous noise level conditioning, as in WaveGrad [341%.
Parallel Tacotron 2 with forced alignment:

Parallel Tacotron 2, a real-time neural TTS system for Japanese
on CPUs, with forced alignment and accentual label input, was im-
plemented (Fig. 4). The phoneme sequence and accentual label se-
quence were obtained by a text analyzer developed in NICT [57-59],
and they were embedded and concatenated, to form 512-dimensional
features. The feedforward Transformer and LConv blocks were im-
plemented using ESPnet-TTS [63] and an official implementation®,
respectively. The loss function for training was the function defined
in (1). The numbers of parameter updates for JAF0O1 and JAMO17

Shttps://github.com/jik876/hifi-gan
7https://github.com/Imnt-com/diffwave
Shttps://github.com/Imnt-com/wavegrad
9https://github.com/pytorch/fairseq
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were S00K and 650K, respectively. Additionally, Parallel Tacotron 2
models with simple duplication-based upsampling (used in [S]) and
Gaussian upsampling (used in [4, 8, 36]) were investigated, instead
of the trainable upsampling. The final training loss scores of train-
able upsampling, duplication-based upsampling, and Gaussian up-
sampling were approximately 0.49, 0.51, and 0.50 for JAF001, and
0.48, 0.49, and 0.49 for JAMO17, respectively. Therefore, the train-
able upsampling was also effective for the models trained by using
forced alignment.
Transformer-based acoustic model with accentual label input:
To compare Parallel Tacotron 2 with an autoregressive acous-
tic model, a Transformer-based acoustic model [64] was used. The
model structure was the same as that used in [59]. The first CNN
layer in [59] was replaced by two embedding layers used in Parallel
Tacotron 2 with accentual label input. The model was also imple-
mented using ESPnet-TTS [63]. The number of parameter updates
for both JAF001 and JAMO017 was 500K. In the Parallel Tacotron 2
and Transformer models, the RAdam optimizer [65] was used with
a learning rate of 0.0001, and the batch size was 32.

5.2. Real-time factor evaluation

The real-time factors (RTFs) of all the models for inference were
measured by executing them on a NVIDIA Tesla V100 GPU and In-
tel Xeon 6152 CPU, where the number of CPU cores was increased
from 1 to 16, as in [66]. The numbers of model parameters and the
results of RTFs using a GPU and 16 CPU cores are shown in Ta-
ble 1. Additionally, the results of RTFs with different numbers of
CPU cores are plotted in Fig. 5. Multi-stream HiFi-GAN success-
fully increased the inference speed, compared with all the HiFi-GAN
V1 models, even though the model size of Multi-stream HiFi-GAN
introducing sub-pixel CNN layers was slightly larger than the sizes
of the HiFi-GAN V1 (a) and (b) models. Multi-stream HiFi-GAN
was also faster than the HiFi-GAN V2 models when using a GPU
and the same speed as the HiFi-GAN V2 models when using 16
CPU cores. A fast neural TTS system with an RTF of 0.1 using
eight CPU cores could then be realized by Multi-stream HiFi-GAN
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Fig. 6. Results of the MOS test for (A) female speaker (JAFO01) and (B) male speaker (JAMO017) with 14 listening subjects. The confidence
level of the error bars is 95%. “MB,” “MS,” “TE,” and “PT2” are Multi-band, Multi-stream, Transformer, and Parallel Tacotron 2, respectively.
(a), (b), and (c) are the types of upsampling layers depicted in Fig. 1. In the multi-speaker condition, HiFi-GAN vocoders were trained using
the JVS corpus and utterances of unseen speakers (JAFOO1 and JAMO017) were synthesized.

and Parallel Tacotron 2. As discussed in [42], HiFi-GAN V1 (¢)
was slightly faster than the other HiFi-GAN V1 models for smaller
kernel sizes when multiple CPU cores were used, even though the
number of model parameters was slightly larger. HiFi-GAN V1 (b)
was slightly slower than the other HiFi-GAN V1 models because of
its double-layer structure.

5.3. Subjective evaluation

To subjectively evaluate the synthesized speech waveforms, mean
opinion score (MOS) tests, on a five-point scale [67], were con-
ducted. These were presented through headphones to 14 Japanese
adult native speakers without hearing loss. There were 792 utter-
ances: 18 utterances (out of 100 test set utterances) x 22 condi-
tions x 2 (JAF001 and JAMO17), as shown in Fig. 6, including
the original test set waveforms. Some of the speech samples used
in the experiments are available online'®. The results of the MOS
tests are plotted in Fig. 6. First, Multi-stream MelGAN and HiFi-
GAN significantly outperformed the original Multi-band MelGAN
and HiFi-GAN V1 models in the analysis—synthesis condition for
the male speaker (Fig. 6). In the other conditions, including TTS
and unseen speaker synthesis, there were no significant differences
between the proposed Multi-stream HiFi-GAN and HiFi-GAN V1
models. These results validate the effectiveness of the proposed
data-driven waveform decomposition, in comparison with the con-
ventional multi-band decomposition approach [27]. Additionally, in
the TTS conditions, the Parallel Tacotron 2 models achieved high-
fidelity synthesis, similar to that of the Transformer models, for both
JAF001 and JAMO17'". If fine-tuning with mel-spectrograms pre-
dicted by Parallel Tacotron 2 is applied, the synthesis quality for the
TTS conditions may be improved as much as that for the analysis—
synthesis conditions [26]. The synthesis quality of multi-speaker

10https:/fis.gd/XBmrMi

1'The MOS values for the TTS conditions were sometimes higher than
those for the analysis—synthesis conditions. This may be because the
phoneme durations predicted by the acoustic models were suited to the lis-
tening subjects [58].

models trained by the JVS corpus was lower than that of single-
speaker models. There was no model that achieved a significantly
higher synthesis quality than the others among HiFi-GAN V1 (a),
(b), and (c). Therefore, sub-pixel CNN upsampling is better than the
other upsampling models, with respect to inference speed.

In summary, Multi-stream HiFi-GAN can successfully increase
the synthesis speed while improving or maintaining the synthesis
quality, compared with the original HiFi-GAN.

6. FUTURE WORK

Although the kernel size in the final CNN layer was set to 63, to
allow a direct comparison with the synthesis filter used in Multi-
band MelGAN, further investigation of the network structure and
parameters is required to further improve the synthesis quality and
increase the inference speed of the proposed method. Multi-stream
HiFi-GAN should also be compared with other recent models, such
as Fre-GAN [29], Basis-MelGAN [32], and UnivNet [31]. Further-
more, the proposed multi-stream structure will also be applied to an
entire end-to-end TTS model, such as VITS [7].

7. CONCLUSIONS

To increase the inference speed while maintaining the synthesis qual-
ity of HiFi-GAN, this paper proposed Multi-stream MelGAN and
HiFi-GAN. In the proposed methods, the fixed synthesis filter of
Multi-band MelGAN is replaced by a trainable CNN layer with the
same structure as the synthesis filter. In contrast to Multi-band Mel-
GAN, the proposed methods use the trainable synthesis filter to de-
compose speech waveforms in a data-driven manner. Additionally,
to evaluate Multi-stream HiFi-GAN as an entire real-time neural
TTS system on CPUs, Parallel Tacotron 2, with forced alignment and
accentual label input for pitch accent languages, was implemented.
The results of experiments demonstrated that Multi-stream HiFi-
GAN can increase the synthesis speed while improving or maintain-
ing the synthesis quality, compared with the original HiFi-GAN.
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