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ABSTRACT

Although sequence-to-sequence (seq2seq) models with attention
mechanism in neural text-to-speech (TTS) systems, such as Tacotron
2, can jointly optimize duration and acoustic models, and real-
ize high-fidelity synthesis compared with conventional duration-
acoustic pipeline models, these involve a risk that speech samples
cannot be sometimes successfully synthesized due to the attention
prediction errors. Therefore, these seq2seq models cannot be di-
rectly introduced in practical TTS systems. On the other hand, the
conventional pipeline models are broadly used in practical TTS
systems since there are few crucial prediction errors in the duration
model. For realizing high-quality practical TTS systems without
attention prediction errors, this paper investigates Tacotron-based
acoustic models with phoneme alignment instead of attention. The
phoneme durations are first obtained from HMM-based forced align-
ment and the duration model is a simple bidirectional LSTM-based
network. Then, a seq2seq model with forced alignment instead of
attention is investigated and an alternative model with Tacotron de-
coder and phoneme duration is proposed. The results of experiments
with full-context label input using WaveGlow vocoder indicate
that the proposed model can realize a high-fidelity TTS system
for Japanese with a real-time factor of 0.13 using a GPU without
attention prediction errors compared with the seq2seq models.

Index Terms— Speech synthesis, neural text-to-speech, dura-
tion model, forced alignment, sequence-to-sequence model

1. INTRODUCTION

The real-time text-to-speech (TTS) technique is an important speech
communication technology. In recent advances in deep learning, the
duration and acoustic models (AMs) in statistical parametric speech
synthesis (SPSS) have been replaced from hidden Markov models
(HMMs) to deep neural networks (DNNs) [1]. Although conven-
tional DNN-based SPSS systems with source-filter vocoders (e.g.,
STRAIGHT [2]) can achieve real-time synthesis [1, 3–5], the syn-
thesized speech quality is still not sufficiently high because of the
over-smoothing problem in AMs and the introduction of source-filter
vocoders.

To simultaneously solve these problems, a neural network-based
autoregressive (AR) generative model for raw audio, WaveNet, has
been proposed [6]. Unlike conventional SPSS systems, WaveNet di-
rectly synthesizes speech waveforms from linguistic features with
predicted phoneme durations and fundamental frequencies, and it
outperforms conventional TTS systems based on unit selection and
SPSS [6]. By introducing high-quality raw waveform modeling in
WaveNet, neural vocoders that directly synthesize raw speech wave-
forms from acoustic features have been proposed [7, 8]; these also
outperform conventional source-filter vocoders in SPSS [9].

Additionally, such neural vocoders can realize end-to-end TTS
directly converting text to raw speech waveforms using sequence-to-
sequence (seq2seq) neural networks. Although conventional SPSS
systems separately train duration and AMs, seq2seq models jointly
train them at once without a pipeline structure, and several end-
to-end methods have been initially investigated [10–12]. Finally,
Tacotron 2 can first realize end-to-end TTS for English with the
same quality as natural speech by introducing a seq2seq model and
neural vocoder to solve pipeline structure and source-filter vocoder
problems in conventional SPSS [13]. In Tacotron 2, input charac-
ters are directly converted into mel-spectrograms using the seq2seq
model, and speech waveforms are synthesized from the predicted
mel-spectrograms using the AR WaveNet vocoder [13]. Following
the success of Tacotron 2, many seq2seq approaches have been in-
vestigated for several languages, not only using character input [10–
22] but also phoneme input [14–16, 19, 23–35].

However, many seq2seq approaches, including Tacotron 2, can-
not achieve real-time synthesis because of the introduction of the AR
WaveNet vocoder. To realize real-time high-fidelity neural seq2seq-
based TTS systems, a real-time neural TTS system for Japanese us-
ing a seq2seq model based on Tacotron 2 with full-context label in-
put that includes phoneme sequences and a WaveGlow vocoder [36]
has been provided [37].

Although these seq2seq models with an attention mechanism
can jointly optimize duration and AMs without phoneme alignment
and achieve high-fidelity synthesis, they run the risk that speech sam-
ples sometimes cannot be successfully synthesized because of atten-
tion prediction errors, as shown in Fig. 3(b), even though attention
prediction accuracy is improved [17,20,23,24,27,34]. This is a cru-
cial problem for practical TTS systems. By contrast, conventional
duration-acoustic pipeline models are broadly used in practical TTS
systems because the phoneme durations can be relatively easily pre-
dicted using simple HMM-based or DNN-based models, and there
are few crucial prediction errors in the duration models. Although
phoneme duration was additionally introduced into seq2seq models
to control speech duration and improve attention prediction accu-
racy in [25, 34], these models are still based on an attention mech-
anism. Although FastSpeech can predict phoneme durations from a
transformer-based model and stably synthesize speech waveforms,
this method requires teacher-student training [38].

To realize high-fidelity practical TTS systems without atten-
tion prediction errors and teacher-student training, in this paper,
Tacotron-based AMs for real-time neural vocoders with phoneme
alignment instead of an attention mechanism are investigated by
extending the seq2seq model with full-context label input [37] based
on the following three facts.

• The model structure of Tacotron 2 has the potential to achieve
higher-quality synthesis than conventional AMs.
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• Many seq2seq methods introduce phoneme input [14–16, 19,
23–35] rather than character input [10–22].

• HMM-based phoneme alignment can be easily achieved
when phoneme sequences are provided, and phoneme du-
rations can be relatively easily predicted by conventional
simple models.

In the investigation, the phoneme durations are first obtained from
HMM-based forced alignment [39] and the duration model is trained
using a conventional simple bidirectional long short-term memory
(LSTM)-based model [40–42]. Then, a seq2seq model with forced
alignment based on phoneme duration instead of an attention mecha-
nism for phoneme-level sequences is investigated and an alternative
AM with the Tacotron decoder and phoneme duration for frame-
level sequences is proposed. These models are compared with the
seq2seq model with an attention mechanism and a conventional
bidirectional LSTM-based AM using a WaveGlow vocoder. This
investigation is important because only a few seq2seq models have
been compared with conventional pipeline models using neural
vocoders [16, 27, 32].

2. WAVEGLOW REAL-TIME NEURAL VOCODER

To overcome the synthesis speed problem in AR WaveNet and Sam-
pleRNN neural vocoders [6, 7], two types of solutions have been
provided. The first is AR models with simple structures, such as
FFTNet [43, 44], WaveRNN [45], and LPCNet [46]. In particu-
lar, WaveRNN and LPCNet can achieve real-time synthesis using
a mobile CPU by introducing a sparse gated recurrent unit. The
other solution is flow [47]-based non-AR models that simultaneously
generate all speech samples at once, parallel WaveNet [32, 48–50],
WaveGlow [36], and FloWaveNet [51]. Additionally, an alternative
real-time approach, the neural source-filter (NSF) [52], has also been
provided. Real-time neural TTS systems with parallel WaveNet [48]
and WaveRNN [45] have been realized using linguistic features with
predicted phoneme durations and fundamental frequencies in AR
WaveNet TTS [6]. Compared with parallel WaveNet [32, 48–50]
and NSF [52], WaveGlow models can be directly trained without
teacher-student training and fundamental frequency analysis. There-
fore, WaveGlow is introduced as a real-time neural vocoder.

During training, input speech waveform x is converted into
Gaussian white noise z. Conversely, a speech waveform is generated
from Gaussian white noise by the inverse operations in the inference.
By introducing the invertible 1 × 1 convolution and affine coupling
layers, the loss function of a WaveGlow vocoder with model parame-
ters θ conditioned on acoustic feature h is derived as − log pθ(x) =
z(x)Tz(x)

2σ2
WG

−∑
j=0 log sj(x,h) −

∑
k=0 log | det(W k)|, where

sj , W k, and σ2
WG are the output coefficients of j-th WaveNet in

the affine coupling layers, k-th weighting matrix of the invertible
1 × 1 convolution layers, and assumed variance of the Gaussian
distribution, respectively. According to the sophisticated structure,
WaveGlow models can be directly trained and all speech samples
can be simultaneously synthesized at once from acoustic features h
and Gaussian white noise z [36].

3. SEQUENCE-TO-SEQUENCE ACOUSTIC MODEL WITH
FULL-CONTEXT LABEL INPUT

Seq2seq AMs for Japanese, with separately embedded phoneme and
accentual-type sequences instead of characters, have been investi-
gated [27]. However, these seq2seq AMs were found to be inferior
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Fig. 1. Neural text-to-speech system based on a sequence-to-
sequence acoustic model with full-context label input and a neural
vocoder [37].

to conventional pipeline models with full-context label input [27].
This result indicates the importance of full-context labels for pitch
accent languages. Additionally, a seq2seq model for Chinese has
been improved using full-context label input [31]. Then, a seq2seq
AM with full-context label input rather than phoneme and accentual-
type sequences was provided by extending the seq2seq architecture
of Tacotron 2 [37].

Phoneme-level full-context labels are obtained as linguistic fea-
tures from a text analyzer. In conventional pipeline TTS frame-
works, duration models are first trained from the label vectors, and
AMs that predict acoustic features for source-filter vocoders are then
trained from the phoneme- or HMM state-aligned frame-level vec-
tors [4,5]. In [37], a seq2seq-AM that predicts mel-spectrograms for
neural vocoders was directly trained from the phoneme-level full-
context label vectors. Full-context label vectors typically include
past and future 2 contexts. As in [4], these past and future 2 contexts
are also reduced in the seq2seq AM because it can access the past
and future contexts throughout their bidirectional recurrent connec-
tions. The seq2seq AM architecture is almost the same as that of
Tacotron 2, except for the input modules (Fig. 1). Compared with
Tacotron 2, phoneme-level full-context label vectors extracted from
a text analyzer are input to a 1× 1 convolution layer instead of char-
acter input and an embedding layer. The seq2seq AM is not an end-
to-end framework but a language-independent framework because
phoneme-level full-context labels for all languages can be directly
introduced. Using the seq2seq AM with a WaveGlow vocoder, a
high-fidelity real-time neural TTS system for Japanese is realized
using a GPU [37]. By introducing full-context label input, it is eas-
ier to add new words compared with end-to-end TTS frameworks,
and this is more suited to practical TTS systems, although text ana-
lyzers are required.

However, this model is also based on an attention mechanism
and has the problem that speech samples sometimes cannot be
successfully synthesized because of attention prediction errors, as
shown in Fig. 3(b). Therefore, to realize high-fidelity practical TTS
systems without attention prediction errors, in this paper, Tacotron-
based AMs for real-time neural vocoders with phoneme alignment
instead of an attention mechanism are investigated by extending
the seq2seq AM. In [37], the seq2seq models with AR WaveNet,
WaveRNN, and WaveGlow neural vocoders were only evaluated via
the listening test and not compared with other AMs.
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Fig. 2. Duration and acoustic models for pipeline neural text-to-speech systems with full-context label input: (a) conventional duration
model with simple bidirectional LSTM and linear layers [40,41]; (b) conventional acoustic model with simple bidirectional LSTM and linear
layers [3, 5]; (c) Tacotron with forced attention using phoneme alignment [27]; (d) proposed acoustic model with the Tacotron decoder and
phoneme duration. Acoustic models (b)–(d) are called “CAM,” “FAT,” and “PAM” in the experiments, respectively.

4. TACOTRON-BASED ACOUSTIC MODELS USING
PHONEME ALIGNMENT

4.1. Conventional DNN-based duration model

In conventional duration-acoustic pipeline models, HMM-based
phoneme alignment [39] can be easily achieved when phoneme
sequences are given, and the phoneme durations can be relatively
easily predicted by conventional duration models compared with
acoustic features in the AMs. According to previous work in [42],
simple mono-phone HMM-based forced alignment is introduced.
Using the phoneme-level full-context labels and phoneme align-
ment, DNN-based duration models are trained with simple bidirec-
tional LSTM and linear layers [40, 41], as shown in Fig. 2(a).

4.2. Conventional DNN-based acoustic model: CAM

To compare the seq2seq model with full-context label input using a
conventional DNN-based AM, a simple bidirectional LSTM-based
AM [3,5] is introduced, as shown in Fig 2(b). In the AM, the frame-
level full-context labels are generated from the phoneme-level labels
and forced aligned phoneme durations. This AM is called “CAM”
in the experiments.

4.3. Tacotron with forced attention based on phoneme align-
ment: FAT

The direct approach to introduce phoneme duration into the seq2seq
model with full-context label input is to replace the attention mecha-
nism with forced alignment based on phoneme duration, as shown in
Fig. 2(c). In this approach, phoneme-level full-context label vectors
are first encoded into phoneme-level hidden features by the Tacotron
encoder. Frame-level hidden features are then generated from the
phoneme-level hidden features and forced aligned phoneme dura-
tions in the same manner as CAM. The frame-level hidden features
are input to the Tacotron decoder. This is equivalent to the scenario
of setting the attention weight that corresponds to the phoneme to
one and the others to zero for a frame according to the forced aligned
phoneme durations. This operation is called “forced attention” in

this paper. In the inference, the phoneme durations predicted by the
duration model in Fig. 2(a) are used as CAM. In the seq2seq AM
in Fig. 1, not only the loss for acoustic features but also the loss
for “stop token” are simultaneously minimized. By contrast, this
model only minimizes the former loss and is expected to generate
more accurate acoustic features without attention prediction errors
compared with the seq2seq AM. This model is called “FAT” in the
experiments.

4.4. Proposed model with the Tacotron decoder and phoneme
duration: PAM

FAT with phoneme and accentual-type sequences and oracle dura-
tions was also investigated in [27] to evaluate the accuracy of du-
ration modeling using the attention mechanism. The results in [27]
demonstrated that the synthesized speech quality of FAT was worse
than those of the seq2seq and pipeline models. This might be be-
cause the duplicated frame-level hidden features are input to the
Tacotron decoder and it might be redundant for the Tacotron decoder.

To solve the redundancy problem in FAT, an alternative AM is
proposed. In the proposed AM, the Tacotron decoder is combined
with CAM without a linear layer, as shown in Fig. 2(d). The main
difference between FAT and the proposed AM is the method of gen-
erating frame-level features. In the proposed AM, the frame-level
features are generated before the bidirectional LSTM layers and re-
dundancy is reduced for the Tacotron decoder.

In [27], a shallow AR bidirectional LSTM-based AM (SAR) [9,
53, 54] was introduced to a pipeline model and outperformed the
seq2seq models. PAM can be regarded as an extension of SAR with
additional pre- and post-nets because two LSTM layers are intro-
duced in PAM instead of a Gaussian mixture model-based mixture
density network in SAR.

Therefore, the proposed AM is expected to generate more accu-
rate acoustic features than the other models without attention predic-
tion errors using the sophisticated Tacotron decoder structure. The
proposed AM is called “PAM” in the experiments.

Additionally, CAM only with the post-net of the Tacotron de-
coder and PAM with the Tacotron encoder instead of bidirectional



LSTM layers have also been investigated in preliminary experi-
ments. However, these models do not outperform PAM and were
not included in the experiments conducted in the next section. Fur-
thermore, WaveGlow vocoders directly conditioned on frame-level
full-context labels with predicted phoneme durations and fundamen-
tal frequencies as WaveNet and WaveRNN TTS systems [6, 45, 48]
have also been investigated with several types of neural networks1.
However, high-quality synthesis using these models has not been
achieved yet.

5. EXPERIMENTS

5.1. Experimental conditions

To evaluate the seq2seq AM, CAM, FAT, and PAM with full-context
label input, experiments were conducted using a Japanese female
speech corpus (neutral data) with a sampling frequency of 24 kHz.
A total of 25,046 (18 h) and 80 utterances were used as the training
set and test set, respectively. Both mel-spectrograms and vocoder
features (VF) constructed from the fundamental frequency and mel-
cepstra [55] were also evaluated as acoustic features for conven-
tional pipeline SPSS systems. Additionally, the AR single Gaus-
sian (SG)-WaveNet vocoder [49] with VF [37, 50] was included be-
cause the speech quality synthesized using a WaveGlow vocoder
with VF was not sufficiently high. Both the analysis-synthesis (AS)
and TTS conditions were evaluated. In the AS condition, WaveGlow
and AR SG-WaveNet vocoders were trained from mel-spectrograms
or VF, and the AS waveforms were synthesized with the test sets’
acoustic features. For the TTS condition, mel-spectrograms or VF
were predicted by the AMs with full-context label input, and the
TTS waveforms were synthesized with the predicted acoustic fea-
tures by WaveGlow and AR SG-WaveNet vocoders trained with the
ground-truth acoustic features in the AS condition. Additionally, a
STRAIGHT vocoder [2] was included as [37].

Acoustic features:
As acoustic features h for mel-spectrograms, 80-dimensional

log-mel-spectrograms were analyzed every 12.5 ms over a Hann
window with length 85.3 ms, with a frequency band 125–7,600 Hz
and normalized to the range [0, 1], as in [13, 37, 50].

Acoustic features h for VF were analyzed every 5 ms over a
Hann window with length 25 ms. Fundamental frequency fo, an-
alyzed by an NDF algorithm [56] was used in all vocoders with
VF [37, 50] and STRAIGHT. Additionally, 35-dimensional mel-
cepstra were analyzed from a simple short-time Fourier transform
of windowed speech waveforms with warping coefficient α = 0.46.
In the neural vocoders with VF, (1 + 1 + 35 =) 37-dimensional
vectors constructed from continuous logarithmic fo, a voice/unvoice
one-hot vector, and mel-cepstra (normalized to have a zero mean
and unit variance) were used.

Duration and acoustic models:
In TTS, the full-context labels were extracted by the text ana-

lyzer used in [37, 57]. Although the number of dimensions of the
linguistic feature vectors for a frame-wise DNN AM was 483 [57],
that for the seq2seq AM was 130 because the past and future 2 con-
texts were reduced, as described in Section 3. The label vectors were
normalized to the range [0, 1].

1This is because the methods of inputting conditioning vectors, such as
linguistic features, to WaveNet and WaveRNN were not disclosed in [6, 45,
48].

Mel-spectrogram synthesized by seq2seq

Original mel-spectrogram

(a) (b)
Attention predicted by seq2seq

Mel-spectrogram synthesized by PAM with predicted duration

Fig. 3. Results of original mel-spectrograms, mel-spectrograms syn-
thesized by PAM and seq2seq models, and attention weights pre-
dicted by the seq2seq model: (a) case in which both models can
successfully synthesize; (b) case in which the seq2seq model cannot
successfully synthesize because of attention prediction errors.

In the seq2seq AM, the number of output channels of the 1 × 1
convolution layer was 512. The model parameters of the seq2seq
AM after the three convolution layers were the same as those used in
Tacotron 2 [13,37]. The learning rate and batch size were 0.001 and
64, respectively. This model was trained using two NVIDIA Tesla
V100 GPUs.

Mono-phone HMM-based forced alignment was introduced us-
ing HTK2 for CAM, FAM, and PAM. The oracle phoneme durations
as the numbers of frames for mel-spectrogram (12.5 ms) and VF
(5 ms) were then obtained based on forced alignment. In the dura-
tion model, the numbers of input, hidden, and output channels were
130, 512, and 1, respectively. The learning rate and batch size were
0.0001 and 64, respectively. The duration model was trained using
an NVIDIA Tesla V100 GPU.

In CAM, frame-level full-context label vectors were obtained
from phoneme-level vectors with three numerical features for the
coarse-coded position of the current frame in the current phoneme
and one numerical feature for the duration of the current segment,
as in [4]3. Additionally, to generate smooth parameter trajectories, a
maximum likelihood parameter generation (MLPG) algorithm [58]
was introduced, except for the voice/unvoice one-hot vector in
VF [4]. Then, the numbers of input, hidden, and output channels for
mel-spectrograms were (130 + 4 =) 134, 512, and (80× 3 =) 240,

2http://htk.eng.cam.ac.uk
3https://github.com/CSTR-Edinburgh/merlin/tree/master/src/frontend/
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and those for VF were (130 + 4 =) 134, 512, and (36 × 3 + 1 =)
109, respectively. The learning rate and batch size were 0.0001 and
64, respectively.

In FAT, all the model parameters were the same as those used in
the seq2seq AM. In PAM, the model parameters of the Tacotron de-
coder were the same as those used in the seq2seq AM and FAT, and
the number of hidden channels in the LSTM layer was 512. Four
numerical features for obtaining frame-level features and the MLPG
algorithm introduced in CAM were not used in FAT and PAM so
that they could be directly compared with the seq2seq AM. There-
fore, the numbers of input channels of FAT and PAM were both 130,
which is the same as those of the seq2seq AM. The learning rate and
batch size for FAT and PAM were also 0.001 and 64, respectively.
The models of CAM, FAT, and PAM were trained using an NVIDIA
Tesla V100 GPU.

WaveGlow and WaveNet neural vocoders and STRAIGHT:
In WaveGlow, all the model parameters were the same as those

used in [36, 37]. The batch length and batch size were 16,000 sam-
ples and 8, respectively. As in [36,37], the learning rate was initially
set to 0.0001 and reduced to 0.00005. In this paper, σWG = 1.0
in the WaveGlow loss function was used for both training and infer-
ence.

In AR SG-WaveNet, the numbers of residual and skip channels
were both set to 128. Twenty layers (10 dilations × 2 cycles) with a
kernel size of 2 were used for the dilated causal convolution layers,
as in [37,49,50]. The learning rate, batch length, and batch size were
0.0002, 12,000 samples, and 8, respectively. Similar to [37], a noise
shaping filtering [59] was also introduced. A parameter to control
noise energy in the formant regions was set to 0.5 [37, 50].

Transposed convolution was applied to the upsampling lay-
ers [6] in WaveGlow and AR SG-WaveNet vocoders, and an Adam
optimization algorithm [60] was introduced in all the neural network
models. WaveGlow and AR SG-WaveNet neural vocoders were
trained using four NVIDIA Tesla V100 GPUs.

In STRAIGHT, only the AS condition was evaluated. Both 35-
dimensional mel-cepstra, with α = 0.46 for the smooth vocal tract
spectrum and aperiodicity components were obtained from the origi-
nal STRAIGHT spectrum and aperiodicity coefficients (1025 dimen-
sions) and the vocoded waveforms were synthesized using the com-
pressed mel-cepstra [37].

5.2. Real-time factor evaluation

The experimental conditions for the combination of AMs and neural
vocoders, including the RTFs for the inference measured using an
NVIDIA Tesla V100 GPU, are shown in Table 1. All modules were
also realized using simple PyTorch4 implementations, as in [37]. The
RTF of the duration model was approximately 0.002 and it was much
faster than those of the AMs and WaveGlow vocoders. The results
of the RTFs indicate that neural TTS systems with all the AMs and
WaveGlow vocoder can synthesize speech waveforms in real-time
using a GPU, even with the use of simple PyTorch implementations,
although the RTFs of those with the AR SG-WaveNet vocoder were
approximately 200, as in [37].

5.3. Attention prediction error for the test set in seq2seq AM

Figure 3 shows examples of the original mel-spectrograms, mel-
spectrograms synthesized by PAM and the seq2seq AM, and atten-
tion weights predicted by the seq2seq AM. In the seq2seq AM, four
utterances out of a total of 80 test set utterances could not be suc-
cessfully synthesized because of attention prediction errors. The at-
tention prediction errors tend to occur in silent sections, as shown
in Fig. 3(b). By contrast, the pipeline models, CAM, FAT, and
PAM successfully synthesized all 80 test set utterances with pre-
dicted phoneme durations.

5.4. Subjective evaluation

To subjectively evaluate the synthesized speech waveforms, mean
opinion score (MOS) tests [61] were conducted. Twenty utterances
successfully synthesized by the seq2seq AM from the test set were
used as the evaluation set. These were presented through headphones
to 15 Japanese adult native speakers without hearing loss (20 utter-
ances × 15 conditions, including the original test set waveforms =
300 utterances).

The MOS results are plotted in Fig. 4. First, PAM for mel-
spectrograms with predicted durations outperformed the other condi-
tions, including all AS conditions and the seq2seq model, which also
achieved high-quality synthesis, with MOS values over 4.0. These
results indicate that PAM with full-context label input and a Wave-
Glow vocoder for mel-spectrograms were successfully trained. Ad-
ditionally, the AMs with predicted durations in (E) and (G) slightly

4https://pytorch.org



Table 1. Experimental conditions of neural text-to-speech includ-
ing real-time factors (RTFs) for the inference using a GPU. ”WG”
and “WN” in the first term denote the neural vocoders WaveGlow
and WaveNet. “MELSPC” and “VF” in the second term denote the
acoustic features mel-spectrogram and vocoder features. “AS” and
“TTS” in the third term denote the synthesis conditions analysis-
synthesis and text-to-speech. “seq2seq,” “CAM,” “FAT,” and “PAM”
in the fourth term denote the acoustic models described in Figs. 1
and 2(b)–(d), respectively. TTS conditions (D), (F), and (H) use or-
acle durations in the inference. Other TTS conditions use predicted
durations. “AM RTF” and “Total RTF” denote the real-time factor
only for acoustic models and total real-time factor for duration and
acoustic models, and a neural vocoder.

Method AM RTF Total RTF
(A):WG-MELSPC-AS - 0.066
(B):WG-MELSPC-TTS-seq2seq 0.063 0.13
(C):WG-MELSPC-TTS-CAM 0.015 0.08
(D):WG-MELSPC-TTS-CAM (OD) 0.015 0.08
(E):WG-MELSPC-TTS-FAT 0.049 0.12
(F):WG-MELSPC-TTS-FAT (OD) 0.049 0.12
(G):WG-MELSPC-TTS-PAM 0.061 0.13
(H):WG-MELSPC-TTS-PAM (OD) 0.061 0.13
(I):WG-VF-AS - 0.06
(J):WG-VF-TTS-CAM 0.045 0.10
(K):WG-VF-TTS-PAM 0.138 0.20
(L):WN-VF-AS - 200
(M):WN-VF-TTS-PAM 0.06 200

Table 2. Results of mean square errors of durations predicted by the
simple duration model (Fig. 2(a)) and mel-spectrograms predicted
by PAM (Fig. 2(d)) with oracle durations for the test set. These
models were trained using 18-hour (full), 10-hour, and 5-hour train-
ing data with HMM-based phoneme alignment, and using 18-hour
(full) training data with simulated incorrect alignment, respectively.

18 h 10 h 5 h 18 h (incorrect alignment)
Duration 1.14 1.11 1.13 1.33
MELSPC 0.87 0.92 0.94 0.94

outperformed those with oracle durations in (F) and (H). These re-
sults suggest that durations predicted by the simple model were suf-
ficient for the AMs and the predicted durations, which tended to be
slightly longer than the original durations, which might have been
more suitable for the listening subjects. As expected in Section 4.4
and reported in [27], the synthesized quality of FAT was worse than
not only the seq2seq AM but also CAM.

Compared with a WaveGlow vocoder for mel-spectrograms, that
for VF could not achieve high-quality synthesis, although the loss
score of the WaveGlow vocoder for VF in the training was lower
than that for mel-spectrograms. Improving the synthesis quality of
a WaveGlow vocoder for VF is future work. Additionally, the syn-
thesis quality of PAM for VF with WaveNet vocoder (M) was worse
than that of the AS condition (L). In (M), both the fundamental fre-
quencies and mel-cepstra were simultaneously trained in a single
model. To improve PAM for VF, it might be better to separately
train them with different networks, as in [9, 27, 54].

5.5. Objective evaluations using PAM

The pipeline approaches, CAM, FAT, and PAM, are based on forced
alignment of phoneme durations. To evaluate the prediction accura-
cies of durations and acoustic features, objective evaluations using
PAM with mel-spectrograms were conducted. The relationship be-
tween the prediction accuracy and amount of training data, and the
mean square errors of durations predicted by the duration model and
those of mel-spectrograms predicted by PAM with oracle durations
for the test set were evaluated using 18-hour (full), 10-hour, and 5-
hour training data with HMM-based phoneme alignment. Addition-
ally, to evaluate the influence of the accuracy of forced alignment,
incorrect forced alignment was artificially simulated by randomly
shifting the phoneme boundaries of the HMM-based phoneme align-
ment to −1, 0, and +1 at the frame level. Table 2 shows the results
of objective evaluations for the test set. The results suggest the fol-
lowing: (1) durations were sufficiently predicted by the model using
a relatively small amount of training data, such as 5 hours; (2) a large
amount of training data was required to accurately predict acoustic
features; and (3) the accuracy of forced alignment was important for
accurately predicting both durations and acoustic features.

Consequently, the proposed Tacotron-based AM using phoneme
duration based on accurate forced alignment with full-context la-
bel input realized a high-fidelity real-time neural TTS system for
Japanese with an RTF of 0.13 using a GPU without attention predic-
tion errors compared with the seq2seq AM.

6. FUTURE WORK

Improving the synthesis quality of a WaveGlow vocoder will be in-
vestigated because the synthesis quality of a WaveGlow vocoder
with mel-spectrograms has not yet reached that of natural speech.
Furthermore, the synthesis quality with VF was worse than with the
STRAIGHT vocoder. Then, these vocoders will be compared with
other real-time neural vocoders, such as parallel WaveNet [48, 49],
WaveRNN [45], LPCNet [46], NSF [52], and FloWaveNet [51]. Ad-
ditionally, sparse WaveRNN and LPCNet will also be investigated
for real-time TTS systems with a mobile CPU, as in [45,46]. Further-
more, PAM should be compared with other AMs, such as SAR [53]
with sophisticated fundamental frequency prediction modeling [54]
and other seq2seq models, including transformer-based TTS [24]
and FastSpeech [38]. PAM should also be applied to other languages
with only phoneme sequence input instead of full-context label in-
put.

7. CONCLUSIONS

To realize high-quality practical TTS systems without attention pre-
diction errors that are sometimes caused in seq2seq models based
on an attention mechanism, in this paper, Tacotron-based AMs with
phoneme alignment instead of an attention mechanism were investi-
gated. A seq2seq model with forced alignment instead of attention
for phoneme-level sequences, that is, FAT, was investigated and an
alternative model with the Tacotron decoder with phoneme duration
for frame-level sequences, that is, PAM, was proposed. These mod-
els were then compared with the seq2seq AM and the conventional
simple bidirectional LSTM-based AM, that is, CAM. The results of
experiments with full-context label input using a WaveGlow vocoder
indicated that the proposed Tacotron-based AM using phoneme du-
ration realized a high-fidelity TTS system for Japanese with an RTF
of 0.13 using a GPU without attention prediction errors compared
with the seq2seq AM.
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